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Abstract

By augmenting the continuous-time specification of Harris and Laibson (2013)

with the assumption that hard borrowing constraints do not bind in equilib-

rium, present bias can be tractably incorporated into rich consumption-saving

models featuring stochastic income, risky and illiquid assets, and costly borrow-

ing. I present closed-form expressions characterizing how present bias affects

consumption, illiquid asset demand, and welfare. This welfare analysis specifies

the channels through which present bias can matter for policy, and uncovers

“the present-bias dilemma”: present bias can have large welfare costs, but in-

dividuals have little ability to alleviate these costs using financial commitment

devices like illiquid assets.
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1 Introduction

There is widespread evidence that consumers exhibit “present bias” across a variety

of decision-making contexts. This evidence exists in lab settings (Frederick et al.,

2002; Cohen et al., 2020), and in field settings ranging from credit card and payday

loan usage (Meier and Sprenger, 2010; Allcott et al., 2022) to consumption choices

during unemployment spells (Ganong and Noel, 2019) to retirement savings decisions

(Madrian and Shea, 2001). Despite the evidence that consumers exhibit present bias,

the modeling of present bias in consumption-saving frameworks is stuck at an impasse:

while present bias has been shown to introduce a variety of novel and economically

relevant behaviors in particular (typically simplified) contexts, generalized results are

often lacking because models with present bias can be difficult to characterize in

practice.1

This paper makes two contributions, one methodological and one applied. The

methodological contribution is the use of continuous-time methods to break this

impasse and forge a new path forward. I develop a continuous-time toolbox for

tractably characterizing the consumption-saving behavior of present-biased agents.

This methodological innovation enables the applied contribution of this paper. I pro-

vide closed-form answers to key open questions about the effects of present bias in

a general consumption-saving environment, including: How does present bias affect

consumption? How does present bias affect the demand for illiquid assets? How does

naivete affect these choices? How does present bias affect welfare? How does present

bias affect the desirability of policy interventions?

In discrete time, present-biased preferences are characterized by the quasi-hyperbolic

discount function: 1, βδ, βδ2, βδ3, ... . Parameter δ is the standard exponential dis-

count factor, while short-run discount factor β creates a disproportionate focus on

the present period by driving a wedge between utility experienced “now” and utility

1Present bias generates strategic interactions between selves, making consumption-saving deci-
sions the equilibrium outcome of a dynamic intrapersonal game. Such strategic behavior often pro-
duces equilibrium non-uniqueness and consumption pathologies (i.e., highly sensitive policy func-
tions that feature non-monotonicities and downward discontinuities). There is a large literature
documenting that these issues can make models with present bias difficult to solve (e.g., Harris and
Laibson, 2001, 2003; Krusell and Smith, 2003; Chatterjee and Eyigungor, 2016; Cao and Werning,
2018; Laibson and Maxted, 2023).
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experienced “later.” Whenever β < 1, preferences are time inconsistent. In the con-

text of consumption-saving models, present bias implies that each self overconsumes

relative to the preferences of any other self.

The modeling of present bias also requires an assumption about the extent to

which agents are aware of their self-control problems (O’Donoghue and Rabin, 1999,

2001). “Sophisticated” agents are fully aware of their time inconsistency. “Partially

naive” agents underestimate the magnitude of their self-control problems, and instead

expect (incorrectly) that all future selves will behave according to the discount func-

tion: 1, βEδ, βEδ2, βEδ3, ..., where βE ∈ (β, 1). In the limiting βE = 1 case, “fully

naive” agents completely fail to foresee their future present bias. Beliefs in this paper

will generally be specified flexibly with βE as a free parameter, thus allowing for an

analysis of how naivete affects choices and welfare.

Following Harris and Laibson (2013), this paper assumes that agents have constant

relative risk aversion (CRRA) utility, and then studies present bias in the limiting

continuous-time specification that results when the length of each period is taken to

zero. This continuous-time specification of present bias is referred to as Instanta-

neous Gratification (IG), because each self lives for a vanishingly short period of time

and discounts all future selves discretely by β. While the assumption that each self

lives for a single instant is made for mathematical convenience, Laibson and Maxted

(2023) show that IG preferences closely approximate discrete-time models with period

lengths that are psychologically appropriate.2

I study IG preferences in a rich model of household balance sheets that allows

for stochastic income, liquid and illiquid assets, and high-cost borrowing.3 Even in

this general environment, the tractability of the IG specification allows me to derive

closed-form expressions characterizing the effect of present bias on choices and welfare.

Before presenting the results, I emphasize that they rely on a key additional

assumption relative to the Harris and Laibson (2013) IG specification: the borrowing

2As detailed in Section 2, laboratory studies find that the temporal division between “now” and
“later” is less than one week. However, discrete-time consumption-saving models typically use either
quarterly or annual time-steps that are inconsistent with the high frequency at which present bias
generally operates.

3These are common and important features in modern consumption-saving models; see e.g. Ka-
plan and Violante (2014), Berger et al. (2018), Kaplan et al. (2018), and Auclert et al. (2018).
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limit on liquid wealth does not bind in equilibrium. Methodologically, I show that this

additional assumption allows for the IG agent’s behavior to be characterized directly

from the behavior of a “standard exponential agent” (i.e., an agent that is identical

to the IG agent of interest except for having no present bias; β = 1). This simple but

powerful observation allows me to express the relative effect of present bias in closed

form, even in complex and cutting-edge models that must be solved numerically.

A key insight of this paper is to identify the pivotal role of non-binding borrowing

limits in unlocking both the tractability of IG preferences and many of the novel

(and perhaps controversial) results that follow. Though the assumption that the

borrowing limit on liquid wealth does not bind in equilibrium may seem strong at

first glance, note that modern economies provide households with a variety of credit

sources (both formal and informal) that they can draw upon, including credit cards,

payday lenders, friends, and loan sharks. If a household uses some credit lines but

never draws upon other sources of credit (e.g., because the interest rates are too

high), then that household has not hit its borrowing limit. Correspondingly, in the

model I allow for the interest rate on borrowing to be flexibly specified, such that

the interest rate on borrowing can increase as the agent borrows more. In particular,

my assumption of a non-binding borrowing limit places no restriction on the cost

of marginal consumption along the equilibrium path, except that it is finite. I also

provide sufficiency conditions such that the IG agent will always remain in the interior

of their liquid wealth space.

With this key assumption in hand, I start by characterizing the consumption

decisions of present-biased agents. Though the effect of present bias on consumption

is often characterized in simplified models (e.g., cake-eating models), an open question

is how present bias affects consumption decisions in more realistic environments. With

the IG specification – even in models featuring stochastic income, costly borrowing,

and multiple assets of varying return and liquidity properties – the effect of present

bias can still be characterized in closed form. Let β denote the agent’s true short-run

discount factor, let βE ∈ [β, 1] denote their perceived present bias, and let γ denote

the coefficient of relative risk aversion. If a standard exponential agent consumes č,

a present-biased agent will consume
(
βE

β

) 1
γ
(

γ
γ−(1−βE)

)
× č.
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I also present an Euler equation for the IG agent to highlight the implications of

this consumption rule. As in Harris and Laibson (2001), the Euler equation shows that

the IG agent acts relatively more impatiently when their MPC is large, and relatively

more patiently when their MPC is small. This state-dependent discounting is an

endogenous outcome of dynamic disagreement. Intuitively, high MPCs discourage

saving because high MPCs imply that a marginal dollar of savings will be more

rapidly consumed by future selves. When the consumption function is concave, as is

typical in incomplete markets models, present bias will therefore cause consumers to

act relatively more impatiently when liquidity is low, and relatively more patiently

as they accumulate liquidity.

This closed-form consumption equation can also be used to characterize the effect

of naivete on consumption decisions. If a sophisticated agent consumes cS, a naive

agent with βE ∈ (β, 1] will consume
(
βE

β

) 1
γ γ−(1−β)
γ−(1−βE)

× cS. Moreover, it also implies

an observational equivalence between sophisticates and naifs. A sophisticate with

short-run discount factor β will consume identically to a (partial) naif with perceived

short-run discount factor βE and true short-run discount factor β′ = βE
[
γ−(1−β)
γ−(1−βE)

]γ
.

One takeaway from this observational equivalence is that it will be difficult to identify

sophistication versus naivete using field data on realized consumption choices.

Next, I study how present bias affects the demand for illiquid assets. Asset illiq-

uidity is a prominent focus of research on present bias. Since the seminal papers of

Strotz (1956) and Laibson (1997), much of the literature has argued that present-

biased consumers seek out illiquidity as a commitment device to increase savings and

limit overconsumption.

In sharp contrast to this typical conclusion, I show that present bias does not

necessarily engender a demand for illiquid assets. Provided that the borrowing limit

on liquid wealth does not bind in equilibrium, present-biased consumers do not seek

out illiquidity because illiquid assets do not actually limit overconsumption. Intu-

itively, the illiquid asset is never needed to fund current consumption, because the

agent can always increase their consumption by adjusting their holdings of the liquid

asset instead. Retirement systems around the world rely on illiquidity to incentivize

retirement savings (Beshears et al., 2015). However, the results in this paper cast
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doubt on the benefits of such policies.

Turning to normative considerations, I derive a closed-form expression charac-

terizing the realized welfare cost of present bias (though a naif may not perceive

such a large cost). Again, this closed-form result holds even in rich environments

with stochastic income, high-cost borrowing, and multiple assets. To present this

welfare metric I consider the following experiment. Suppose that there exists a per-

fect commitment device that forces all future selves to behave with complete self-

control (β = 1), but this device costs a perpetual consumption tax of τ . The re-

alized welfare cost of present bias is equivalent to a perpetual consumption tax of

τ = 1−
(

αγ

1−γ+γα

) 1
1−γ

, where α =
(
γ−(1−βE)

γ

)(
β
βE

) 1
γ
.

This welfare cost can be large. For example, if β = βE = 0.75 and γ = 2, the

welfare cost of present bias is equivalent to a perpetual 2% consumption tax. Under

full naivete (βE = 1), this cost rises to 2.4%. If β = 0.5 and βE = 1, as estimated

in Laibson et al. (2023b), the welfare cost of present bias is equivalent to a perpetual

consumption tax of 17.2%. For context, these costs are at least an order of magnitude

larger than back-of-the-envelope estimates of the welfare cost of transitory business

cycles (Lucas, 1987), and sit at the upper end of calculations in the literature (e.g.,

Krusell et al., 2009).

Given the magnitude of this welfare cost, it is natural to ask how the welfare of

present-biased agents can be improved. To answer this question, note first that the

welfare cost of present bias depends on only three parameters: β, βE, and γ. Looked

at the other way around, this highlights all of the variables that the welfare cost of

present bias does not depend on: wealth levels, the income process, interest rates,

and illiquidity. Accordingly, any policy intervention that alters these variables will

improve the welfare of a present-biased agent if and only if it also improves the welfare

of a standard exponential agent. This is a key policy takeaway — it implies that a

policymaker does not need to consider present bias when determining whether or not

a given policy is welfare improving.4

From the perspective of an individual consumer, this same conclusion leads to

4However, a policymaker may still need to consider present bias when determining whether or not
a policy is feasible (i.e., whether it obeys a budget constraint). See Section 6.1 for further discussion.
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the quandary that I call the present-bias dilemma: the welfare cost of present bias is

large, but it is difficult for an individual to reduce. Self-imposed financial commitment

devices, such as penalty borrowing rates or asset illiquidity, will not improve the

welfare of a present-biased agent because they do not improve the welfare of a standard

exponential agent. Intuitively, though self-imposed financial penalties can improve

incentives they may not generate perfect commitment, in which case the benefit of

improved incentives can be dominated by the added financial cost of the penalized

behavior that still occurs.

Commitment has been perhaps the central theme of research on self-control prob-

lems ever since Strotz (1956). However, the present-bias dilemma suggests that

economists’ frequent focus on financial commitment devices as a means of improving

consumption-saving decisions may have been in some respects misguided. Despite

the present-bias dilemma thus being a conclusion that flies in the face of conventional

wisdom, it is well-known that “commitment is a problematic prediction [in the first

place], since we see so little of it in the economy” (Laibson, 2015, p. 267). The

present-bias dilemma provides a novel remedy to this long-standing tension.

The present-bias dilemma implies, regrettably, that the welfare cost of present bias

is both large and difficult for an individual to mitigate. On a brighter note, I end the

paper by outlining potential resolutions to this dilemma. One resolution in particular

is that government interventions differ from the sorts of financial commitments that

any individual can self-impose, because governments can not only impose corrective

taxes (which alone will not improve welfare), but can also redistribute revenues back

to consumers. Unlike financial penalties alone, I show in a simple model that the

combination of penalties plus redistribution can be welfare-improving.5

Related Literature. The methodological contribution of this paper is to show that

IG preferences are an essential tool for modeling present bias in frontier consumption-

saving models. The tractable methods developed here are applied in Laibson et al.

(2023a) and Lee and Maxted (2023), which augment rich heterogeneous-agent models

with present-biased households in order to better align those models with household

5See e.g. Moser and Olea de Souza e Silva (2019) and Beshears et al. (2022b) for richer analyses
related to government interventions in economies populated by present-biased consumers.
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financial data, and to quantitatively assess the channels through which present bias

can matter for household responses to macroeconomic policy. Alternatively, my focus

here is instead on analytically characterizing the decisions of present-biased agents

and the welfare consequences of those decisions.

The IG model was first developed in Harris and Laibson (2013). Laibson and

Maxted (2023) show that discrete-time models with short period lengths (e.g., 1 week)

are closely approximated by continuous-time IG models. The IG framework builds on

the foundational work of Barro (1999) and Luttmer and Mariotti (2003), and more

recent continuous-time implementations include Grenadier and Wang (2007), Cao

and Werning (2016), Shigeta (2020), Acharya et al. (2022), Beshears et al. (2022a),

and Rivera (2022).

The consumption-saving model that I study is cast in continuous time and features

stochastic income, costly borrowing, and liquid and illiquid assets (similar e.g. to

Kaplan et al., 2018). I show how – both analytically and numerically – to tractably

incorporate present-biased preferences into these sorts of frontier incomplete markets

models.

Using these novel methods, I provide theoretical results on overconsumption and

high-cost borrowing that add to a large literature studying how present bias en-

courages short-term borrowing on unsecured accounts such as credit cards (Heidhues

and Kőszegi, 2010; Meier and Sprenger, 2010; Gathergood, 2012; Kuchler and Pagel,

2020) and payday loans (Skiba and Tobacman, 2018; Allcott et al., 2022). I also

study the interaction of present bias with asset illiquidity, building on papers such as

Strotz (1956), Laibson (1997), Angeletos et al. (2001), Amador et al. (2006), Galperti

(2015), Bond and Sigurdsson (2018), Moser and Olea de Souza e Silva (2019), and

Beshears et al. (2022b).

Finally, I use IG preferences to characterize the welfare cost of present bias. For a

discussion of welfare in models with time-inconsistent preferences, see Bernheim and

Rangel (2009) and Bernheim and Taubinsky (2018). This analysis also relates to the

more general literature studying present-biased agents’ demand for commitment. For

overviews, see DellaVigna (2009), Bryan et al. (2010), Laibson (2015), and Carrera

et al. (2022).

8



2 Instantaneous Gratification: A Summary

I begin by summarizing the Harris and Laibson (2013) specification of Instantaneous

Gratification (IG) time preferences. In discrete time, the quasi-hyperbolic discount

function is given by: 1, βδ, βδ2, βδ3, ... . IG preferences are the continuous-time limit

of this discount function, where each self lives for a vanishingly short length of time.

Let the current period be denoted t. Taking the limit of the discrete-time discount

function, IG preferences are described by the limiting discount function D(s) for s ≥ t:

D(s) =

1 if s = t

βe−ρ(s−t) if s > t
. (1)

Parameter ρ ∈ (0,∞) is the exponential discount rate. Parameter β ∈ (0, 1] is the

short-run discount factor, which drives a wedge between utility “now” and utility

“later.” When β < 1, discount function D(s) features a discontinuity at s = t. This

is because the current self lives for only an instant, and discounts all future selves by

β. For reference, Figure 1 below plots the discount function for β = 0.75 and ρ = 2%.

Figure 1: IG Discount Function. This figure plots an IG discount function for
β = 0.75 and ρ = 2%. This discount function features a discontinuity between “now”
and “later.”

IG preferences should be thought of as a mathematically tractable limit case,

since the temporal division between “now” and “later” is certainly longer than a

single instant dt. However, and in contrast to the quarterly or annual horizons that

discrete-time consumption-saving models have often used in the past, the “psycholog-
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ical present” is estimated to be short: Augenblick (2018) estimates that the division

between“now” and “later” is approximately 2 hours, Augenblick and Rabin (2019)

find that essentially all discounting occurs within one week, and McClure et al. (2007)

use fMRI data to estimate that food rewards are discounted by 50% over a one-hour

horizon.6 In light of this evidence, Laibson and Maxted (2023) substantiate the IG

specification by showing that it closely approximates models in which the duration

of “now” is psychologically appropriate. Accordingly, one of my goals in the current

paper is to illustrate just how tractable the IG specification can be for incorporating

present bias into frontier consumption-saving models.7

Remark. IG time preferences are a generalization of standard time-consistent pref-

erences. Exponential discounting is recovered by setting β = 1.

Expectations and Intrapersonal Equilibrium. The modeling of present bias

requires an assumption about the extent to which each self foresees the present bias of

future selves (O’Donoghue and Rabin, 1999, 2001). As discussed in the introduction,

I use βE to denote the short-run discount factor that the current self expects all

future selves to have. For all but full naivete, present-biased agents don’t share the

perceived preferences of future selves. This complicates the analysis of consumption-

saving models, because it means that decisions need to be modeled as a dynamic

intrapersonal game played by different “selves” of the agent (Strotz, 1956; Laibson,

1997). Taking prices as given, an equilibrium to this intrapersonal game will be

referred to as an intrapersonal equilibrium.

I follow Harris and Laibson (2013) in studying stationary Markov-perfect equilibria

to the intrapersonal game (Maskin and Tirole, 2001).8 For the general environment

analyzed in this paper, a critical property of their IG model is that equilibrium satis-

6See also DellaVigna (2018) and Gottlieb and Zhang (2021) for related discussions.
7The results of Laibson and Maxted (2023) imply that one could analogously study present bias

in discrete time, but with short (e.g. daily) time-steps. In practice, there are two drawbacks to
this approach relative to IG. First, the IG model allows for closed-form expressions characterizing
the effect of present bias. Second, discrete-time models with short time-steps can be slow to solve
numerically, whereas this paper extends the fast continuous-time methods discussed in Achdou et
al. (2022) to IG preferences (see Section 7.2).

8Though the subgame-perfect refinement can introduce interesting equilibria (Laibson, 1994;
Bernheim et al., 2015), an analysis of non-Markov equilibria is beyond the scope of this paper.
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fies a partial differential equation. This provides analytical tractability for studying

the effects of present bias on policy and value functions (Sections 5 and 6), and also al-

lows for the use of well-developed continuous-time numerical methods to characterize

such equilibria (Section 7.2). This is in contrast to discrete time, where pathological

equilibrium properties can make analytical and numerical characterization difficult.9

Economists have differing views on the extent to which agents are aware of their

self-control problems (see e.g. DellaVigna (2018) and Allcott et al. (2022) for discus-

sions). I do not take a stand on this issue: for all levels of naivete, this paper provides

a general and analytically tractable method for solving models with present-biased

agents.

3 Consumption-Saving Model

I now present the consumption-saving model that I study in this paper. The model

is cast in continuous time following Achdou et al. (2022), and features a generalized

income process, costly borrowing, and illiquid assets in order to capture key inno-

vations of frontier models in the literature (e.g., Kaplan et al., 2018). Despite these

enrichments, the model presented below is intentionally streamlined along various

dimensions for simplicity and to maintain a closer connection to existing papers in

the literature. The tractability of IG preferences implies that many of the results in

this paper will continue to hold in even richer economic environments. Section 7.1

discusses some relevant extensions.

Throughout this paper I study consumption-saving decisions in partial equilib-

rium, and I focus on the behavior of a single agent. The reason that I focus on

a single agent in partial equilibrium is that this is where the issues with present

bias arise. Once I show how to characterize an intrapersonal equilibrium for the

present-biased agent, expansion to heterogeneous agents and aggregation to general

equilibrium follow standard practices.10

9See e.g. Harris and Laibson (2001, 2003), Krusell and Smith (2003), Cao and Werning (2018),
and Laibson and Maxted (2023) for discussions.

10For more, Supplementary Material Appendix E presents a general equilibrium Aiyagari-Bewley-
Huggett model augmented with present-biased agents. Similar to Achdou et al. (2022), the solution
takes the form of two coupled PDEs.
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3.1 The Household Balance Sheet

My model of the household balance sheet is similar to Kaplan et al. (2018) and Kaplan

and Violante (2022). I adopt similar notation when possible.

The household faces idiosyncratic income risk. The household’s income flow at

time t is denoted by yt ≥ 0, where income yt follows a finite-state Poisson process

(which can have arbitrarily many states). Let λy→y
′ ∈ (0,∞) denote the switching

intensity from income state y to income state y′.

The household has access to both a liquid asset b and an illiquid asset a. For

the liquid asset, when b > 0 the household earns a constant return of r ≥ 0 on their

liquid wealth. The household can also borrow up to a borrowing limit of b in the

liquid asset. However, borrowing is (potentially) costly. Specifically, I assume that a

marginal dollar of borrowing requires the household to pay an interest rate wedge of

ω(b) above the risk-free rate r.11 This implies that when b < 0 the household pays an

average interest rate on their debt of r +W(b), where W(b) =
∫ 0
b ω(q)dq

−b denotes the

average borrowing wedge.

In this model it will be notationally easier to work with average interest rates.

Let r(b) denote the average wealth-varying interest rate, which is given by:

r(b) =

r if b ≥ 0

r +W(b) if b < 0
. (2)

WhenW(0) > 0, equation (2) introduces what is sometimes referred to as a “soft bor-

rowing constraint,” which captures the empirically realistic property that households

may face a wedge between the rate at which they can borrow versus save. Addition-

ally, the flexible specification of borrowing wedgeW(b) allows for the average interest

rate on borrowing to increase as the household borrows more. Once the household

hits the hard borrowing constraint of b, additional borrowing is completely restricted.

The illiquid asset a has an expected return of ra and a volatility of σa. Short

positions against the illiquid asset are restricted (i.e., at ≥ 0). This asset is illiquid

11Wedge ω : [b, 0]→ [0,∞) can have a finite number of discontinuities that capture, for example,
the household switching to payday loans after maxing out its credit card. I assume that ω(b) is
weakly decreasing in b (i.e., the borrowing wedge weakly increases as the household borrows more).
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because of two types of adjustment frictions. First, households can only rebalance

their financial wealth across liquid and illiquid assets stochastically at rate λa (Kaplan

and Violante, 2022). Second, any rebalancing between liquid and illiquid assets is

potentially subject to a transaction cost (further details below).12

Formalizing the above discussion, in between adjustment opportunities the house-

hold chooses consumption flow ct and its balance sheet evolves as follows:

dbt = (yt + r(bt)bt − ct) dt (3)

dat
at

= radt+ σadZt, (4)

where Zt is a standard Brownian motion, and bt is subject to the hard borrowing

constraint bt ≥ b.

When the household receives a stochastic opportunity to rebalance its financial

wealth, it can choose a new liquid-wealth level of b′ ≥ b and a new illiquid-wealth level

of a′ ≥ 0, subject to a transaction cost. Letting d = a′ − at denote the household’s

deposits to (if positive) or withdrawals from (if negative) the illiquid asset, such de-

posits/withdrawals are subject to a transaction cost of χ(d).13 The budget constraint

when the household chooses to rebalance is then given by:

a′ + b′ = at + bt − χ(a′ − at), subject to b′ ≥ b and a′ ≥ 0. (5)

12This specific setup for illiquidity is not restrictive, and some extensions are discussed in Section
7.1. I start with this setup because it is technically quite convenient, and hence simplifies exposition.
In particular, the assumption that households face only stochastic rebalancing opportunities (taken
from Kaplan and Violante, 2022) circumvents the need to model adjustment decisions as a stopping-
time problem using HJB Variational Inequalities. An extension with fixed adjustment costs and no
delays – which utilizes HJB Variational Inequalities – is provided in Section 7.1 and Appendix D.1.

13To put some structure on transaction-cost function χ(d), I assume for now that: (i) χ(0) = 0
(i.e., no rebalancing has no cost); (ii) 0 ≤ χ(d) ≤ |d| (i.e., the cost of rebalancing is weakly between
zero and the amount rebalanced); and (iii) χ′′(d) ≥ 0 (i.e., the marginal cost of rebalancing weakly
increases as the amount of rebalancing increases). As already mentioned in footnote 12, this simple
model of illiquidity can be modified and extended.
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3.2 Utility and Value

The household accrues CRRA utility over consumption:14

u(c) =


c1−γ−1

1−γ if γ 6= 1

ln(c) if γ = 1
. (6)

Under IG time preferences, the actual continuation-value function is given by:

vt = Et
[∫ ∞

t

e−ρ(s−t)u(cs)ds

]
, (7)

and the actual current-value function is given by:

wt = βvt. (8)

The intuition for equation (8) is as follows. The current self discounts the utility of

all future selves by β. But in continuous time the current self lives for just a single

instant dt, and therefore the utility accrued by the current self has no measurable

impact on the overall value function. So, wt = βvt.
15

I emphasize the term actual for equations (7) and (8) because the expectation op-

erator in those equations denotes the modeler’s expectation. This will not necessarily

equal the household’s own expectation if the household is partially or fully naive (i.e.,

βE ∈ (β, 1]). The household’s perceived continuation-value function is:

vEt = Et
[∫ ∞

t

e−ρ(s−t)u(cEs )ds

]
, (9)

where cE denotes the consumption rate that the household would adopt if it was

sophisticated with short-run discount factor βE. The perceived current-value function

14In the case where c = 0 and γ ≥ 1, set u(0) = −∞.
15To show this as a limiting argument, let ∆ denote the time-step of a discrete-time model.

Heuristically, wt = βvt results from wt = lim
∆→0

u(ct)∆ + βe−ρ∆Etvt+∆.
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is:

wEt = βvEt . (10)

The true short-run discount factor β is still used in equation (10), since the current

self discounts the utility of future selves by β regardless of naivete.

Additional Restrictions on Analysis. Throughout this paper I impose the fol-

lowing three technical restrictions. First, I follow Harris and Laibson (2013) and

restrict γ > 1 − βE, such that the IG agent’s desire to smooth consumption (γ) is

greater than their perceived time inconsistency (1 − βE). Second, if the model is

calibrated such that min{y}+ r(b)b < 0, then I replace b with the (tighter) “natural”

borrowing limit of bn defined implicitly by bn = −min{y}
r(bn)

.16 Third, I again follow Harris

and Laibson (2013) and assume that the standard integrability assumptions are met,

such that vt is neither positively nor negatively infinite.17

3.3 Intrapersonal Equilibrium Definition

I begin by defining intrapersonal equilibrium for a sophisticated agent, following the

definition in Harris and Laibson (2013). I then generalize the definition to allow for

naivete.

I consider stationary Markov-perfect equilibria in three state variables: liquid

wealth b ∈ [b,∞), illiquid wealth a ∈ [0,∞), and income y ∈ {y1, y2, ...yN}. To

simplify notation, let x = (b, a, y) denote the vector of state variables that characterize

the household’s balance sheet position.

Equilibrium Under Sophistication. Starting with the sophisticate’s problem, a

stationary Markov-perfect equilibrium to the sophisticated IG agent’s intrapersonal

16This is without loss of generality, and simply ensures that the agent always has the ability to
consume a nonnegative amount whenever bt ≥ b.

17More formally, I only consider equilibria for which vt < ∞ for all t, and for which vt > −∞
for all bt > bn. As discussed in Harris and Laibson (2013) (see also Laibson, 1994), the latter
assumption is substantive in the sense that additional equilibria yielding negatively infinite value
can often be constructed when utility is unbounded below, but these equilibria can reasonably be
ruled out ex-ante.
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problem is characterized by the following Bellman equation, which consists of a dif-

ferential equation defined on x:

ρv(x) = u(c(x)) + vb(x) (y + r(b)b− c(x))

+ va(x) (raa) +
1

2
vaa(x)(aσa)2 + λa (v∗(x)− v(x))

+
∑
y′ 6=y

λy→y
′
(v(b, a, y′)− v(b, a, y)), (11)

subject to the optimality conditions:

u′(c(x)) =

βvb(x) if b > b

max
{
βvb(x), u′(y + r(b)b)

}
if b = b

, and (12)

v∗(x) = max
b′,a′

v(b′, a′, y) s.t. constraint (5) holds, (13)

and the global bounds:

u (min{y}+ r(b)b)

ρ
≤ v(x) ≤ v̌(x), (14)

where v̌(x) denotes the value function of a “standard exponential agent” that dis-

counts exponentially (β = 1) but is otherwise identical to the IG agent (further

detailed in Section 4.1).18

Discussion. Equation (11) defines the continuation-value function v of the IG

agent. It says that the instantaneous change in value due to discounting (ρv) must

equal the current utility flow (u(c)) plus the expected instantaneous change in the

value function (Edv/dt).19

18From the integrability restrictions at the end of Section 3.2: (i) v̌(x) < ∞ for all x; and (ii) if
γ ≥ 1 and the borrowing limit is natural – i.e., b = bn and hence min{y} + r(b)b = 0 – then the

bound u(min{y}+r(b)b)
ρ ≤ v(x) is replaced by the tighter restriction of v(x) > −∞ for all b > bn.

19Describing the structure of equation (11) in a bit more detail, the first row reflects the value
function’s dependence on the utility flow u(c) and on liquid wealth b. The second row reflects v’s
dependence on illiquid wealth a, including the stochastic arrival of rebalancing opportunities at rate
λa. The final row reflects v’s dependence on the income state y. See also Harris and Laibson (2013),
Laibson et al. (2023a), or Laibson and Maxted (2023) for similar Bellman equations for IG agents.
Relatedly, see e.g. Achdou et al. (2022, Appendix B) for a derivation of a continuous-time HJB
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Equation (12) defines the IG agent’s consumption choice. In continuous time,

consumption is unconstrained for all b > b. Whenever consumption is unconstrained,

the IG agent sets the marginal utility of consumption equal to the marginal value

of current liquid wealth: u′(c(x)) = wb(x) = βvb(x). At the borrowing constraint

b, the optimality condition is refined to ensure that the agent does not violate the

constraint: c(x) ≤ y + r(b)b. If βvb(x) ≥ u′(y + r(b)b) then the agent will choose to

set c(x) ≤ y + r(b)b. Otherwise, consumption is restricted to y + r(b)b.

Equation (13) implicitly defines the asset allocation decision, as given by the

adjustment targets of b′(x) and a′(x). Whenever the IG agent receives an opportunity

to adjust, they will choose b′ and a′ to maximize their current-value function w(x).

Since w(x) = βv(x) and hence maximizing v is analogous to maximizing w, equation

(13) works directly with v(x).

As in Harris and Laibson (2013), equation (14) places intuitive global bounds

on the IG agent’s value function. Since the IG agent can always consume at least

min{y}+r(b)b for any x, the restriction that v(x) ≥ u(min{y}+r(b)b)
ρ

implies that the IG

agent chooses a strategy that is at least as good as consuming this minimum amount

in each period. The second restriction that v(x) ≤ v̌(x) implies that the IG agent’s

value function is weakly less than the value function that would obtain if the IG agent

did not have present bias (β = 1) and hence made policy choices optimally.

Comparing the consumption decision in equation (12) to the asset allocation de-

cision in equation (13), the key difference between the two decisions is that the β

discount factor only has a direct effect on the consumption decision. Intuitively, β

does not directly impact the asset allocation decision because this decision only af-

fects the consumption of future selves.20 However, β < 1 can still indirectly affect the

asset allocation decision through its effects on v(x).

Equations (11) through (14) look similar to the Hamilton-Jacobi-Bellman (HJB)

equation starting from discrete time.
20For b > b, the current (instantaneous) self always has enough liquidity to fund their consumption.
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equation that would arise for a standard exponential agent with β = 1.21 The key

difference is that present bias alters the consumption optimality condition (12). The

IG agent sets u′(c(x)) = βvb(x), whereas a standard exponential agent would instead

set u′(c(x)) = vb(x). In both cases the current self sets the marginal utility of con-

sumption equal to the marginal value of liquid wealth. However, under IG preferences

the marginal value of wealth is discounted by β, since wealth is consumed by future

selves whose utility is discounted by β.

Finally, before proceeding further I need to clarify what is meant by a solution to

the IG agent’s Bellman equation defined above. Following Harris and Laibson (2013),

the answer is: a continuous viscosity solution. I provide a brief discussion here and

in Appendix A.1, summarizing the fuller discussion in Harris and Laibson (2011).22

Starting with continuity, the intrapersonal equilibrium definition specified above im-

plicitly rules out equilibria with discontinuous value functions. While a focus on

continuous value functions is reasonable in the sense that vanishing amounts of high-

frequency (Brownian) noise – some heuristic examples of which include taste shocks,

surprising utility bills, and missed buses that turn into taxi rides – can “smooth

out” any potential value-function discontinuities,23 such a focus should nonetheless

be viewed as economically restrictive (e.g., value-function discontinuities have been

identified in non-IG models of present bias, including Krusell and Smith (2003), Chat-

terjee and Eyigungor (2016), Cao and Werning (2018), and Laibson and Maxted

(2023)). In addition, the notion of solutions employed here is that of viscosity solu-

tions, because there will exist calibrations of the model in which classical solutions to

21The β = 1 HJB equation is (ignoring boundary conditions; see also Kaplan and Violante, 2022):

ρv(x) = max
c

u(c) + vb(x) (y + r(b)b− c)

+ va(x) (raa) +
1

2
vaa(x)(aσa)2 + λa(v∗(x)− v(x))

+
∑
y′ 6=y

λy→y
′
(v(b, a, y′)− v(b, a, y)).

22The published version (Harris and Laibson, 2013) also has a discussion, but the earlier 2011
draft provides some additional details (available on David Laibson’s website).

23Harris and Laibson (2013) show that the value function in an IG model without Brownian noise
is the limiting value function of a model with Brownian noise that vanishes to zero. See also Laibson
and Maxted (2023) for a discussion on the role of high-frequency noise in “smoothing out” equilibria.
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the IG agent’s Bellman equation may not exist (e.g., v exhibits kinks).24

One-Step Extension to Naivete. I now extend the equilibrium definition to

allow for naivete. Recall that a naive agent believes that all future selves will be

sophisticated with short-run discount factor βE ∈ (β, 1]. Thus, a naive agent believes

that equations (11) through (14) characterize the equilibrium that all future selves

will follow (except that β is replaced by βE in equation (12)).

Let vE(x) denote the corresponding value function that solves equations (11)

through (14) for a sophisticated agent with short-run discount factor βE. Using

equation (10), the naive agent’s actual consumption decision is given by:

u′(c(x)) =

βvEb (x) if b > b

max{βvEb (x), u′(y + r(b)b)} if b = b
. (15)

Similarly, the naive agent’s actual asset allocation decision (i.e., their adjustment

targets of b′(x) and a′(x)) is implicitly determined by the maximization problem:

v∗(x) = max
b′,a′

vE(b′, a′, y) s.t. constraint (5) holds. (16)

Comparing the naif’s actual behavior to their beliefs, naivete creates incorrect ex-

pectations about the consumption decision but not the asset allocation decision. For

consumption, the naif expects that future selves’ consumption choices will depend on

βE, but equation (15) shows that actual consumption decisions depend on β.

4 Tractability in Continuous Time: The û Agent

Following Harris and Laibson (2013), a key benefit of IG preferences combined with

CRRA utility is that the problem of the dynamically inconsistent IG agent can be re-

cast as a dynamically consistent optimization problem. Specifically, one can construct

a solution to the sophisticated IG agent’s intrapersonal problem indirectly, by instead

24Achdou et al. (2022) provide an “Economist’s Guide” to viscosity solutions. Seminal references
in the mathematics literature include Crandall and Lions (1983) and Crandall et al. (1992).
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solving for the value function of a time-consistent agent who discounts exponentially

(β = 1) but has a reverse-engineered utility function denoted û. Then, the IG agent’s

behavior can be recovered from this û agent. This section spells out the details of the

û construction. For the rest of the paper, I will then follow this recasting technique

in order to characterize an equilibrium for the IG agent.

4.1 Introducing Two Additional Types of Agents

I begin by introducing the two additional types of agents that will be used for char-

acterizing the IG agent: the û agent and the standard exponential agent.

Definition (û Agent). The first agent is referred to as the “û agent.” The û agent

discounts exponentially (β = 1) at rate ρ, but has a modified utility function denoted

û (defined in Section 4.3 below). The value and policy functions of the û agent will

be denoted with a hat (e.g., v̂(x) and ĉ(x)).

Following Harris and Laibson (2013), the û agent is reverse-engineered so that

there exists an equivalence between value functions of the û agent and the sophisti-

cated IG agent when placed in the same economic environment. This allows for the

IG agent’s problem to be recast as a time-consistent optimization problem.

While the û agent is thus an important mathematical tool, there is no inherent

economic content to their behavior. In particular, the û agent has a nonstandard

utility function, û, that is reverse-engineered for the sole purpose of characterizing

equilibrium for the IG agent. This creates a problem: while the IG agent’s behavior

can be characterized from the û agent’s behavior, the û agent’s behavior is itself

nonstandard (and economically immaterial).25

In light of this problem, a goal of the current paper is to also understand how the

IG agent compares to a “standard” exponential agent (β = 1) with standard CRRA

utility.

25Indeed, Harris and Laibson (2013, p. 207) write: “The nonstandard optimization problem
[of the û agent] is interesting, not because we think it is psychologically relevant, but because its
partial equivalence enables us to use the machinery of optimization to study the value function of a
dynamically inconsistent problem.”
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Definition (Standard Exponential Agent). The second agent is referred to as the

“standard exponential agent.” This standard exponential agent is identical to the IG

agent of interest in all ways except for having β = 1. That is, the standard exponential

agent discounts exponentially (β = 1) at rate ρ, and has standard CRRA utility u(c).

The value and policy functions of the standard exponential agent will be denoted with

an upside-down hat (e.g., v̌(x) and č(x)).

Unlike the reverse-engineered û agent, I call this second exponential agent “stan-

dard” because they have the CRRA utility and exponential time preferences that

economists typically work with. Moreover, the standard exponential agent is what

the IG agent would become if they had β = 1.

4.2 Key Insight: Non-Binding Borrowing Limits

The critical next step is to establish how (and when) the behavior of the nonstandard

û agent can be related to the behavior of the standard exponential agent. With this

relationship in place, the û agent can then be used as a conduit to link policy and

value functions of the IG agent to those of the standard exponential agent.

To establish this mapping between the standard exponential agent and the û

agent, most of the results in Sections 5 and 6 exploit the following observation:

Remark. If the borrowing limit does not bind in equilibrium then the û utility function

is a positive affine transformation of standard CRRA utility. Accordingly, if the

borrowing limit does not bind in equilibrium then the û agent’s policy functions are

identical to those of the standard exponential agent.

This simple observation is the key to unlocking the power of IG preferences. It

implies that whenever the borrowing limit does not bind in equilibrium (further dis-

cussed in Section 5.1), the nonstandard û agent actually behaves identically to the

standard exponential agent. The IG agent’s behavior can then be characterized di-

rectly from that of the standard exponential agent, even in complex models that must

be solved numerically.

The remainder of this section formalizes the above discussion. It can be skipped

upon first reading, in which case the reader is directed to Section 5 for results.
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4.3 The û Construction

As in Harris and Laibson (2013), define

û+(ĉ) =
ψ

β
u

(
1

ψ
ĉ

)
+
ψ − 1

β
, where ψ =

γ − (1− β)

γ
. (17)

û+(ĉ) is a positive affine transformation of CRRA utility function u(c), and is con-

structed so that û+(ĉ) < u(ĉ) for all ĉ > 0. Additionally, note that ψ ∈ (0, 1].26

The complete û utility function depends on whether or not the borrowing con-

straint b binds. Fully, û is defined as follows:27

û(ĉ, x) =



û+(ĉ) if b > b

û+(ĉ) if b = b and ĉ ≤ ψ(y + r(b)b)

−∞ if b = b and ĉ ∈ (ψ(y + r(b)b), y + r(b)b)

u(ĉ) if b = b and ĉ ≥ y + r(b)b

. (18)

The û utility function can be split into two sub-cases: a case where the borrowing

constraint does not currently bind, and a case where it does. When the constraint

does not bind (first two lines), utility is given by û+(ĉ). The constraint binds when

b = b and ĉ = y + r(b)b (fourth line). In this case the û utility function is given by

the standard CRRA utility function u(·). Since u(ĉ) > û+(ĉ), the û agent can obtain

a “utility boost” at b = b by setting ĉ = y + r(b)b.

The third line imposes that the û agent earns −∞ utility whenever b = b and ĉ ∈
(ψ(y + r(b)b), y + r(b)b). Essentially, this forces the û agent to make a choice at b:

they can either set ĉ ≤ ψ(y + r(b)b) or ĉ = y + r(b)b. The former choice earns lower

utility û+ but allows the agent to move off of the constraint. The latter choice earns

the “utility boost,” but requires the agent to stay at b.

I again emphasize that the û utility function is just a reverse-engineered math-

ematical tool. To understand the value function equivalence between the û agent

and the sophisticated IG agent, consider first the case where the û agent is uncon-

26This follows from the parameter restrictions of β ∈ (0, 1] and γ > 1−β for a sophisticated agent.
27For pedagogy, this paper’s specification of the û utility function differs slightly from Harris and

Laibson (2013) in order to emphasize the effect of borrowing constraint b on the û agent’s behavior.
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strained (either b > b or ĉ(b, a, y) ≤ ψ(y+r(b)b)). Since the û agent is time consistent

they choose ĉ to maximize v̂, whereas the time-inconsistent IG agent overconsumes.

Thus, the û agent’s utility must be adjusted downward to ensure that v̂(x) = v(x),

which is why û+(c) < u(c). Next, consider the case where the û agent is constrained

at b. Since this constraint also prevents the IG agent from overconsuming, the û

agent’s utility no longer needs to be penalized, so û(ĉ, x) = u(ĉ). That is, this “utility

boost” captures that binding constraints benefit present-biased agents by restricting

overconsumption at b.

4.4 Value Function Equivalence

The next proposition formalizes the tractability that the reverse-engineered û agent

provides via its value function equivalence to the sophisticated IG agent.

Proposition 1. Let v̂(x) denote the value function of the û agent, who chooses con-

sumption and illiquid deposits/withdrawals to maximize: Et
∫∞
t
e−ρ(s−t)û(ĉs, xs)ds.

28

If v̂(x) solves the û agent’s Bellman equation (defined in Appendix A.1), then v̂(x)

is also a continuation-value function for the sophisticated IG agent (i.e., it solves the

Bellman equation defined in Section 3.3). The converse also holds.

Proof. Unless stated in the main text, all proofs are provided in Appendix A. This

value function equivalence result is based on Harris and Laibson (2013).

Proposition 1 formalizes the key property of the û agent: they allow for the prob-

lem of the dynamically inconsistent IG agent to be recast as a dynamically consistent

optimization problem. Using the û agent in this way to characterize v(x), equations

(12) and (13) then determine the sophisticate’s policy functions c(x), b′(x), and a′(x).

Similarly, equations (15) and (16) can be used to determine the naif’s policy functions.

Understanding the û Agent. Proposition 1 implies that the sophisticated IG

agent’s value function can be characterized using the û agent. This also implies that

the IG agent’s policy functions can be related to those of the û agent. But, the û agent

28That is, v̂(x) is the supremum of payoffs that the û agent can feasibly obtain starting from
initial state x (Harris and Laibson, 2013).
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is a reverse-engineered mathematical apparatus with a nonstandard utility function.

So, the key to understanding the û agent’s behavior is to recognize when the û agent

does, and does not, behave identically to the standard exponential agent.

Remark. If the borrowing constraint never binds for any income state then the

û agent behaves identically to the standard exponential agent: i.e., ĉ(x) = č(x),

b̂′(x) = b̌′(x), and â′(x) = ǎ′(x). This is due to the fact that û+(ĉ) is a positive

affine transformation of u(c), and if the constraint never binds then û(ĉ, x) = û+(ĉ)

for all x.

This affine-transformation property no longer holds when the borrowing constraint

binds for some income state, because now the û agent receives a nonstandard “utility

boost” that represents the benefits of such constraints for present-biased agents.

5 The Effect of Present Bias on Policy Functions

5.1 Key Assumption: The Borrowing Limit Does Not Bind

For the remainder of this paper I assume that the hard borrowing constraint at b

does not bind in equilibrium. As emphasized in Section 4.2, this assumption allows

for the IG agent to be characterized directly from the standard exponential agent.

Definition. Define an unconstrained equilibrium as an equilibrium in which the bor-

rowing limit b never binds along the equilibrium path. That is, if b0 > b then bt > b

for all t ≥ 0.

Assumption 1. Following the Harris and Laibson (2013) IG specification, I consider

IG equilibria that can be characterized using the û agent; i.e., equilibria for which

v(x) = v̂(x) (or vE(x) = v̂(x) if naive).29 See Section 4 for û-agent details.

Then, my key assumption is that the model is calibrated such that the IG agent’s

intrapersonal equilibrium is unconstrained.

29This restriction uses the Harris and Laibson (2013) û agent to select a potential solution to the
IG agent’s Bellman equation. Note that Harris and Laibson (2013) provide an argument that the
IG agent’s intrapersonal equilibria always satisfy this property, which would then also imply that
there is a unique v that solves the IG agent’s Bellman equation (since v̂ is unique).
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Starting from the Harris and Laibson (2013) IG specification, the extra restric-

tion now imposed by Assumption 1 is that the IG agent always has some option to

consume marginally more along their equilibrium path. To illustrate the economic

realism of this assumption, it’s helpful to first discuss what I assume away; namely,

binding hard borrowing limits. If an agent is bound by a hard borrowing constraint,

what that means is that the current self wants to consume more in the current period,

but it is impossible for them to do so (i.e., the cost of marginal consumption is infi-

nite). However, common observation suggests that this sort of strict impossibility is

generally unrealistic: modern economies provide households with a variety of (formal

and informal) credit channels that they can draw upon, such as credit cards, pawn

shops, payday lenders, friends, and loan sharks. And if a household depletes some

credit lines but never uses other sources of credit (e.g., because the interest rates are

too high), then that household has not hit its borrowing limit. So, to the extent that

it is empirically true that households have some credit margin still available to them,

then an empirically well-calibrated model that includes all of these possible sources

of credit will satisfy Assumption 1.30 I emphasize again that the flexible specification

of borrowing rates in equation (2) allows for borrowing wedge W(b) to become arbi-

trarily large as the agent borrows more, such that Assumption 1 places no restriction

on the cost of marginal borrowing along the equilibrium path, except that it is finite.

Despite Assumption 1 being a reasonable description of the typical household bud-

geting environment, a downside of Assumption 1 as stated is that it is an assumption

about an endogenous model variable, namely liquid wealth bt. So, I now provide

sufficient (but not necessary) calibrational restrictions on exogenous parameters to

ensure that an unconstrained equilibrium exists. To do so, I first define the “natural”

borrowing limit in this model (with potentially costly borrowing).31 Let bn denote

30Empirically, Lee and Maxted (2023) report that roughly 70% of working-age households have
a credit card, and find in administrative credit bureau data that only 1% of individuals have fully
maxed out all of their credit cards. For the remaining population of working-age households without
credit cards, the 2019 FDIC National Survey of Unbanked and Underbanked Households reports
that only 3% used a payday loan in the past 12 months, only 3% used a pawn shop loan in the past
12 months, and only 11% used any nonbank credit product in the past 12 months. These statistics
again suggest that modern economies provide households with a variety of credit channels, but that
many of these credit channels are infrequently drawn upon and hence remain available if needed.

31I use scare quotes around the word natural to emphasize that my usage of the term is somewhat
nonstandard. In particular, while the natural borrowing limit defined here is still the maximum
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the natural borrowing limit. It is defined implicitly by

bn =
−min{y}
r(bn)

,

where the wealth-varying interest rate r(b) is defined in equation (2). Then, the fol-

lowing Proposition presents sufficient parameter restrictions such that a sophisticated

IG agent will have an unconstrained equilibrium for any level of β.

Proposition 2. If b ≤ bn and γ ≥ 1 then the sophisticated IG agent has an intrap-

ersonal equilibrium that is unconstrained for all β ∈ (0, 1]. A generalized condition

that allows for naivete is given in the proof of this proposition (see Appendix A).

Two points of clarification about Proposition 2 are likely helpful. First, while

Proposition 2 allows agents to borrow (at least) up to bn, this does not necessarily

imply that agents borrow unrealistically large amounts: bn increases toward zero both

as the minimum calibrated income state decreases and as calibrated borrowing interest

rates increase. Second, while Proposition 2 provides sufficient parameter restrictions

such that Assumption 1 holds for any β, unconstrained equilibria can also exist when

these restrictions are not met. In particular, a sufficient condition for the existence

of an unconstrained equilibrium for some interval of β values is merely the existence

of an unconstrained equilibrium for the standard exponential agent with β = 1:

Remark. Assume that the model is calibrated such that the standard exponential

agent is unconstrained in equilibrium. Then, there exists an interval of values β ∈
(β̊, 1] such that the IG agent also has an unconstrained intrapersonal equilibrium.

While a full explication of this remark requires results that have not yet been

presented, the intuition follows from the fact that the effect of present bias (β) on

consumption is continuous when Assumption 1 holds, and in particular can be made

arbitrarily small by setting β close enough to 1 (see Proposition 3 below).

Finally, it is informative to frame Assumption 1 in the context of the broader

consumption-saving literature. It is, of course, quite common for modelers to assume

amount that an agent can borrow while guaranteeing weakly positive consumption, my allowance
for costly borrowing in equation (2) means that the natural borrowing limit could nonetheless be
very close to b = 0 if borrowing rates are high (or if the minimum income state is low).
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that agents can only borrow up to some ad hoc limit that is occasionally binding (e.g.,

two common assumptions are that agents cannot borrow at all, or that agents can

borrow up to their credit card limit but no more). However, these sorts of borrowing

limits are often not intended to be completely realistic (e.g., payday loans do exist,

even if not explicitly modeled). Rather, to the extent that various high-cost credit

margins are infrequently used and unlikely to change model predictions, then they

can be ignored in order to improve model parsimony.

While ignoring alternative, high-interest, credit margins is often a reasonable sim-

plification in models without present bias, my results below reveal that models with

present bias can actually be acutely sensitive to these (often seemingly peripheral)

modeling assumptions. This is because present-biased agents’ equilibrium behavior

can interact with any binding hard borrowing limits that are imposed by the mod-

eler, since present-biased agents recognize that binding constraints provide a powerful

“bright-line” restriction on future selves’ overconsumption; i.e., future selves must set

ct ≤ yt+r(b)b at the borrowing limit.32 Assumption 1, alternatively, imposes no such

upper bound — along the equilibrium path, the agent always can consume marginally

more if they choose to do so. The results in Sections 5.3 and 6 illustrate how powerful

this optionality can be for unwinding the benefits of financial commitment devices.

Despite the potential appeal of Assumption 1, I want to emphasize that there are

also a variety of limitations to the modeling assumptions used to derive the results

below. Further discussion of these limitations, particularly as they relate to possible

resolutions to the present-bias dilemma, is provided in Section 6.3.

5.2 Present Bias and Overconsumption

I begin by providing closed-form expressions for the effect of present bias on consump-

tion. Though the consumption of present-biased agents is commonly characterized

in simplified environments, an important methodological takeaway from Proposition

32As discussed in Section 4.3, the benefit of binding constraints is highlighted by the “utility
boost” obtained by the û agent at b. For further analysis, Supplementary Material Appendix E
presents a workhorse Aiyagari-Bewley-Huggett model with a binding hard borrowing constraint.
That Appendix also provides additional theoretical results on the interaction of present bias with
the binding constraint.
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3 below is that analytical tractability also exists in rich consumption-saving environ-

ments when Assumption 1 holds.

Proposition 3. Assumption 1 holds. Let β denote the agent’s true short-run discount

factor, let βE ∈ [β, 1] denote the agent’s perceived short-run discount factor, and let

ψE = γ−(1−βE)
γ

. Relative to the standard exponential agent, the consumption of the

IG agent is given by:33

c(x) =

(
βE

β

) 1
γ 1

ψE
× č(x). (19)

Equation (19) simplifies in two cases of particular interest. Under sophistication,

the IG agent consumes 1
ψ

times the standard exponential agent, where ψ = γ−(1−β)
γ

(defined in (17)). Under full naivete, the IG agent consumes β−
1
γ times the standard

exponential agent.

Proposition 3 can also be used to compare sophisticates versus naifs:

Corollary 4. Assumption 1 holds. If a sophisticate with βE = β consumes cS(x), a

naif with βE ∈ (β, 1] will consume
(
βE

β

) 1
γ γ−(1−β)
γ−(1−βE)

×cS(x). Consumption is increasing

in naivete when γ > 1, and decreasing in naivete when γ < 1.

Proof. The standard exponential agent’s consumption function č(x) is independent

of β and βE. This corollary then follows from equation (19).

It has often been shown in simplified environments that sophisticates and naifs will

adopt the same equilibrium consumption function when γ = 1, whereas consumption

is increasing in naivete when γ > 1, and decreasing in naivete when γ < 1 (e.g.,

Tobacman, 2007).34 Corollary 4 shows that this result continues to hold in much

more general environments.

33If vE(x) has kinks, then equation (19) holds when vE(x) is locally differentiable in b.
34David Laibson has also taught this result via a simple three-period model in his PhD Psychology

and Economics course (I was a student in 2017). The intuition for this result is that naivete
introduces two offsetting effects. On the one hand, the naif is more willing to save because the naif
trusts their future selves. On the other hand, the naif is less willing to save because the naif believes
that future selves will save enough on their own. The former effect dominates when the agent is
relatively more willing to substitute intertemporally (γ < 1), and vice versa.
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Taking this comparison of sophisticates and naifs even further, Proposition 3 also

implies that there is an observational equivalence between sophisticates and naifs.35

Corollary 5. Assumption 1 holds. A sophisticated agent with short-run discount

factor β will consume identically to a naive agent with perceived short-run discount

factor βE ∈ [β, 1] and true short-run discount factor β′ = βE
[
γ−(1−β)
γ−(1−βE)

]γ
.

Proof. The standard exponential agent’s consumption function č(x) is independent

of β and βE. This corollary then follows from equation (19).

A key takeaway from Corollary 5 is that sophistication versus naivete cannot be

easily identified from field data on consumption-saving decisions.36,37 Instead, it is

more likely that identification can be found by evaluating data on procrastination

(O’Donoghue and Rabin, 1999), contract choices (DellaVigna and Malmendier, 2004,

2006; Gabaix and Laibson, 2006; Heidhues and Kőszegi, 2010), or the accuracy of

budgeting plans (Augenblick and Rabin, 2019; Kuchler and Pagel, 2020; Allcott et

al., 2022; Lian, 2023), as these sorts of decisions follow more directly from agents’

misperception of their future actions.

State-Dependent Discounting: An Euler Equation. To gain more intuition

for how present bias affects the consumption decision, continuous-time methods can

also be used to obtain an Euler equation for the IG agent. For notational simplicity

I assume full sophistication in the Euler equation below. But, recall from Corollary 5

that there is an observational equivalence between sophisticates and naifs whenever

Assumption 1 holds. Additionally, Appendix A provides a generalized Euler equation

that allows for naivete.
35See also Blow et al. (2021) for a related observational-equivalence result. Numerically, it is

often found that naifs and sophisticates behave similarly in discrete-time lifecycle models (see e.g.
Angeletos et al., 2001), and Corollary 5 below formalizes this finding.

36Note that agents choose both consumption and illiquid deposits/withdrawals, but Corollary 5
only shows that there is an observational equivalence between the consumption of sophisticates and
naifs. However, the observational equivalence continues to hold for illiquid deposits/withdrawals, as
will be shown in Proposition 8 below.

37A related paper that structurally estimates the discrete-time quasi-hyperbolic discount function
(1, βδ, βδ2, ...) is Laibson et al. (2023b). In that paper, we circumvent this observational-equivalence
issue by assuming from the start that agents are fully naive (βE = 1). Then – and in line with
the theoretical results in Propositions 7 and 8 below – identification of β versus δ comes from the
combination of credit card debt and (illiquid) wealth accumulation data.
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Proposition 6. Assume the IG agent is sophisticated (βE = β). Let ς(bt) denote the

marginal interest rate that the agent earns on their liquid wealth of bt.
38 Whenever

c(xt) and r(bt) are locally differentiable in b, consumption satisfies the following Euler

equation:

Et (du′(c(xt))) /dt

u′(c(xt))
=
[
ρ+ (1− β)cb(xt)

]
− ς(bt). (20)

A generalized Euler equation that allows for naivete is given in the proof of this

proposition (see Appendix A).

Proposition 6 is the continuous-time analogue of the discrete-time Hyperbolic

Euler Relation derived in Harris and Laibson (2001). A similar continuous-time Euler

equation for sophisticates is presented in Harris and Laibson (2004).39 The left side

of equation (20) is the expected growth rate of marginal utility. When β = 1, we

recover the standard Euler equation that the expected growth rate of marginal utility

equals discount rate ρ minus interest rate ς(b) (Achdou et al., 2022). When β < 1,

dynamic inconsistency means that the IG agent also cares about the extent to which

future selves will consume out of a marginal dollar of savings, as captured by the

instantaneous MPC of cb(xt). This dynamic disagreement implies that the IG agent

acts as if they have a state-dependent discount rate of ρ+ (1− β)cb(xt).

As described in Harris and Laibson (2001), the intuition for why a present-biased

agent’s effective discount rate is increasing in cb(xt) is as follows. A sophisticated

agent knows that future selves will overconsume, which incentivizes the current self

to set wealth aside in order to buffer against future overconsumption. However, the

current self’s ability to save for the future depends on the extent to which subsequent

selves will overconsume out of any marginal savings. If cb(x) is large then marginal

savings will be quickly consumed, thereby reducing the current self’s willingness to

38Fully, the marginal interest rate is

ς(b) =

{
r if b ≥ 0

r + ω(b) if b < 0
.

39However, their setup differs from the one here, and they do not generalize the Euler equation
for naifs.
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save.

Importantly, in models with stochastic income the consumption function is typ-

ically concave in liquid wealth, implying that MPCs will be higher for low-liquidity

agents (Carroll and Kimball, 1996). When this is the case, equation (20) differen-

tiates present bias from exponential discounting because (20) implies that present-

biased consumers will act relatively more impatiently when their liquidity is low, and

relatively more patiently as they build a buffer stock of liquid wealth.

Equation (20) can also be contextualized in relation to the literature on heteroge-

neous time preferences. When the consumption function is concave in liquid wealth,

present bias will introduce similar effects as heterogeneous time preferences. An

important difference, however, is that models with heterogeneous time preferences

assume preference heterogeneity across individuals, while present bias endogenously

generates effective time-preference heterogeneity within individuals that varies with

liquid wealth (Laibson, 1998). Relatedly, models with heterogeneous time prefer-

ences produce differences in wealth due to differences in patience, whereas models

with present bias produce differences in patience due to differences in wealth.40

Present Bias and High-Cost Borrowing. When β = 1, soft constraints as in

equation (2) whenW(0) > 0 can generate a buildup of agents with exactly zero liquid

wealth (see e.g. Achdou et al., 2022). When β < 1, soft constraints no longer prevent

borrowing. To show this result in a simple environment, I assume here that there is

only a single liquid asset b, and income is deterministic with yt = y > 0 for all t. For

notational simplicity I again present the following result for a sophisticated agent,

but recall that there is an observational equivalence between sophisticates and naifs

whenever Assumption 1 holds (Corollary 5).

Proposition 7. Assumption 1 holds. Assume also that there is just a single liquid

asset b, income is deterministic with y > 0, and the IG agent is sophisticated. Let

s(b) = y + r(b)b − c(b) denote the saving policy function. Set r < ρ
β

so that the IG

40This result has some conceptual similarities to the temptation model of Banerjee and Mul-
lainathan (2010). See also Aguiar et al. (2020) for empirical evidence that a positive correlation
between liquidity and patience helps consumption-saving models fit the available data.
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agent dissaves for b > 0. Regardless of W(b), the IG agent chooses to accumulate

debt at b = 0 by setting s(0) < 0.

Proposition 7 provides the stark result that the IG agent will always choose to

accumulate some amount of debt when β < 1, regardless of how large the initial

interest rate on borrowing is. Note, however, that this is only a statement about

the extensive margin of high-cost borrowing; just because the IG agent is willing to

revolve some high-cost debt, this is not to say that they will necessarily borrow a lot.

See also Lee and Maxted (2023) for more, which builds upon the simple framework in

Proposition 7 to demonstrate that IG preferences can help to reconcile heterogeneous-

agent models with the data on high-cost credit card borrowing.41

Note too that while Proposition 7 formally uses IG preferences, the intuition only

depends on psychologically appropriate (i.e., short) – but not necessarily instanta-

neous – time-steps. To demonstrate this point, consider a discrete-time model in

which a present-biased agent has zero liquid wealth (b = 0) and is deciding whether

or not to borrow. Assume this agent has a β of 0.8, and the annualized borrowing

rate is 25%. If periods are one year apart then the current self may decide to not bor-

row at a 25% rate. If periods are only one day apart, however, now that annualized

borrowing rate of 25% corresponds to a daily rate of only 0.06%. Since the current

self still discounts the next self (i.e., tomorrow) by β = 0.8, the current self may now

be much more willing to borrow in order to increase consumption.

5.3 Present Bias May Not Engender a Demand for Illiquidity

I now turn to the present-biased agent’s demand for illiquid assets. Starting from the

seminal papers of Strotz (1956) and Laibson (1997), much of the literature on present

bias argues that present-biased agents seek out illiquid assets as a commitment against

overconsumption.

In sharp contrast to this research, I present an irrelevance result showing that

present bias does not necessarily affect the demand for illiquid assets:

41Additionally, Supplementary Material Appendix F presents a numerical example of the simplified
model in Proposition 7, and highlights an interesting implication of Proposition 1 in this deterministic
model: when r + ω(b) > ρ for all b < 0, the IG agent’s continuation-value function for b ≥ 0 can be
independent of ω(b) despite the IG agent eventually accumulating debt at that borrowing wedge.
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Proposition 8. Assumption 1 holds. The IG agent and the standard exponential

agent choose the same asset allocation policy function: b′(x) = b̌′(x) and a′(x) = ǎ′(x).

That is, conditional on receiving a rebalancing opportunity at point x in the state

space, the resulting adjustment decision is independent of β and βE.

This irrelevance result arises in this class of two-asset models because the liquid

asset eliminates any commitment benefits from the illiquid asset. The agent never

needs the illiquid asset in order to finance current consumption — they can always

adjust their holdings of the liquid asset instead. Indeed, Proposition 3 shows that

the IG agent always consumes
(
βE

β

) 1
γ 1
ψE

times the standard exponential agent’s con-

sumption, meaning that asset illiquidity does not affect the relative overconsumption

caused by present bias. Since the illiquid asset does not limit overconsumption, there

is no reason for present-biased agents to seek it out as a commitment device.42

To clarify this intuition further, it’s helpful to work through the following thought

experiment. Consider a sophisticated IG agent that is given a rebalancing opportunity

at time 0. Assume that this IG agent currently has positive liquid wealth (i.e., b0 > 0),

but faces a high interest rate on any borrowing that they may incur (e.g., W = 25%

if b < 0). One may wonder: why can’t this IG agent force their future selves to

consume less by investing even more than b0 into the illiquid asset, thereby pushing

future selves into a modestly indebted state and hence sharply increasing the marginal

cost of consumption for those future selves (since W � 0)? The answer is actually

that this is not quite the right question to ask. While this strategy will force future

selves to consume less, that is not the same as reducing overconsumption per se.

To understand this, recall the consumption policy function for a sophisticate given

in equation (19): c(x) = 1
ψ
× č(x). This consumption equation has two components:

the “β = 1” part of consumption č(x), and the multiplicative “present-bias wedge”

of 1
ψ

. The strategy proposed above of pushing future selves into high-interest debt

will lower those future selves’ consumption. But, this effect will only operate through

the “β = 1” part of consumption č(x); it will not affect the relative overconsumption

of 1
ψ

that is caused by present bias. In short, while pushing future selves into debt

42Though the IG agent will not seek out the illiquid asset for commitment reasons, they could still
hold illiquid wealth for the same reasons that the standard exponential agent may; e.g., if ra > r.
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will lower those selves’ consumption, it will not lower their overconsumption, and the

latter is what is needed to generate a commitment benefit from the illiquid asset.

This intuition also highlights why Proposition 8 relies on Assumption 1 that the

agent is never against a binding hard borrowing constraint in equilibrium. By con-

trast, if an agent is bound by a hard borrowing constraint then that constraint will

prevent them from fully consuming 1
ψ
č(x). Hence, the hard constraint provides a

sharp, bright-line, limit on overconsumption that elevated interest rates alone do not.

Discussion. In the general class of two-(or more)-asset models considered here,

Proposition 8 provides a sharp result highlighting that present bias may not engender

a demand for illiquid assets. As discussed above, this irrelevance result relies on

Assumption 1. I emphasize this point because it contrasts with many of the earlier

insights on illiquidity that have thus far been developed in the literature, which often

rely on binding constraints. For example, in Laibson (1997) the agent is always

endogenously liquidity constrained in equilibrium. While binding constraints are

a powerful modeling tool for simplifying models that can otherwise be extremely

unruly, it’s less clear that our real-world economic decisions are truly characterized

by such bright-line restrictions on consumption.43 So, the role of Assumption 1 is to

instead allow for the possibility that the potential commitment benefits of illiquidity

can be undermined by borrowing, and Proposition 8 highlights just how much such

optionality can matter.

More broadly, Proposition 8 speaks to the long-standing puzzle of why present-

biased agents do not use commitment devices (e.g., Laibson, 2015; Bernheim and

Taubinsky, 2018). This literature has concluded that commitment is often hampered

by a desire for flexibility, partial naivete, or costs to establishing a commitment device

(e.g., Amador et al., 2006; Laibson, 2015). Proposition 8 suggests a complementary

explanation: designing commitment devices is like playing a game of Whack-a-Mole.

In my model, illiquid assets have no commitment benefits because the agent always

has another margin (the liquid asset) that they can adjust in order to overconsume.

43As discussed in Section 5.1 for example, while it is common for consumption-saving models to
abstract away from nonbank credit margins like payday loans for simplicity, these borrowing margins
do still often exist in reality.
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Extending this intuition more generally, there are many margins that can potentially

be adjusted to bring utility into the current period, ranging from the consumption of

unhealthy food to decreasing exercise to staying up too late. Unless a commitment

device can block all of these sources of temptation, there is no reason for the agent to

choose an ineffective “commitment device” that actually serves only to limit flexibility.

6 Welfare and the Present-Bias Dilemma

Welfare analyses can be difficult in models with time-inconsistent preferences because

such preferences do not typically feature a single welfare criterion. In models with

present bias, the common approach is to adopt a long-run view in which policymakers

seek to maximize the continuation-value function vt. However, this approach ignores

the preferences of each individual self. This may be unsatisfactory if, for example,

the current self is better able to evaluate their immediate preferences than a distant

self (Bernheim and Rangel, 2009).

Unlike discrete-time models, continuous-time IG preferences feature a single wel-

fare criterion (Harris and Laibson, 2013). This important property arises because

each self lives for just an instant, and therefore composes only an infinitesimal part of

the overall value function. More formally, the current self wants to adopt policies that

maximize current-value function wt. But since wt = βvt, any policy that maximizes

vt will also maximize wt.
44 This single welfare criterion property, combined with the

tractability of IG preferences, means that IG preferences are well-suited for studying

policy and welfare in rich economic environments.

6.1 The Welfare Cost of Present Bias

IG preferences combined with CRRA utility allow for a closed-form characterization

of the welfare cost of present bias. In order to present a welfare metric that applies

in the general consumption-saving environment that I am studying, I consider the

following experiment. Assume that there exists a perfect commitment device that

44While this single welfare criterion property only holds exactly under IG preferences, it is robust
to discrete time with short time-steps, where each self is just a small part of the total value function.

35



forces all future selves to behave with full self control (β = 1), but this commitment

device comes at the cost of a perpetual consumption tax of τ . The realized welfare

cost of present bias can be expressed in terms of consumption tax τ .

Proposition 9. Assumption 1 holds. Let α = ψE
(

β
βE

) 1
γ
. The welfare cost of present

bias is equivalent to a perpetual consumption tax of:

τ = 1−
(

αγ

1− γ + γα

) 1
1−γ

. (21)

τ is decreasing in β, and τ is increasing in βE if and only if γ > 1.45

Before continuing, I emphasize that τ gives the realized welfare cost of present

bias. If the agent is naive, however, they may not perceive such a large welfare cost.

Instead, a naif perceives that the welfare cost of their present bias is equivalent to a

tax of τE = 1−
(

(ψE)γ

βE

) 1
1−γ

.46

Proposition 9 is powerful because it is very general, and holds in this rich consumption-

saving environment that allows for stochastic income, costly borrowing, and multiple

assets of varying return and liquidity properties. As long as Assumption 1 applies,

the welfare cost of present bias can be represented as a consumption tax of size τ .

The fact that such a simple formula characterizes the welfare cost of present bias

across a general class of models may seem surprising. The IG specification makes

this welfare characterization possible. The proof relies on the fact that the value

function of the IG agent can be recast as the value function of an exponential agent

with a modified utility function. Then, the proof boils down to finding the tax τ that

provides an equivalent welfare loss as the modified utility function.47

45When γ = 1, the tax is given by τ = 1− exp( β−1
β )

β .
46This is the maximum tax that a sophisticate with short-run discount factor βE would accept in

order to eliminate their present bias.
47It is worth noting that τ is only defined when 1− γ + γα > 0. This is not necessarily the case

under naivete when γ > 1 and α is low. In these cases, the naif behaves so poorly that their realized
value function goes to −∞. Intuitively, the naif always thinks that they are only overconsuming for
a single instant. When this mistake is made repeatedly, it can lead to a realized value function that
is undefined (though at each point in time, the naif perceives that their value function is finite).
The condition that 1 − γ + γα > 0 can be thought of as a bound on the level of naivete that is
theoretically admissible.
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Discussion. The first takeaway from Proposition 9 is that present bias can be very

costly. For example, if β = βE = 0.75 and γ = 2 then the welfare cost of present

bias is equivalent to a perpetual 2% consumption tax. For β = 0.5 and βE = 1, as

estimated in Laibson et al. (2023b), the welfare cost rises to 17.2%. These costs are

at least an order of magnitude larger than benchmark estimates of the welfare cost

of business cycles (Lucas, 1987).

The second takeaway from Proposition 9 is that the welfare cost of present bias de-

pends only on β, βE, and γ. The welfare cost of present bias is decreasing in β, which

is straightforward. The welfare cost is larger under naivete when γ > 1, and larger

under sophistication when γ < 1. This follows from Corollary 4: overconsumption is

exacerbated by naivete when γ > 1, and is reduced by naivete when γ < 1.

An alternate way to look at this second takeaway is to consider what the welfare

cost of present bias does not depend on. The welfare cost of present bias is indepen-

dent of liquid wealth b, illiquid wealth a, income state y, and market price parameters

r,W , χ, ra, and σa. Though changes to these variables will certainly affect the agent’s

welfare, they do not independently affect the relative welfare cost of present bias. As

Proposition 3 shows, the IG agent always consumes
(
βE

β

) 1
γ 1
ψE

times the standard

exponential agent’s consumption, meaning that the relative overconsumption caused

by present bias is constant over the state space and depends only on β, βE, and γ.

This intuition yields the following Proposition, which is a key policy implication of

this welfare analysis:

Proposition 10. Assumption 1 holds. A policy intervention that alters the income

process, interest rates, and/or transaction costs improves the welfare of the IG agent

if and only if it improves the welfare of the standard exponential agent.

Proof. The proof of Proposition 10 follows from Proposition 9, which implies that

the IG agent’s value function is a positive affine transformation of the standard ex-

ponential agent’s value function. So, any policy that increases one value function will

increase the other, and vice-versa.

From the perspective of an individual IG agent, Proposition 10 implies that fi-

nancial commitment devices, such as penalty borrowing rates and asset illiquidity,
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will not alleviate the welfare costs of present bias. To the extent that such devices

are undesirable for the time-consistent exponential agent, they will also make the

IG agent worse off. This forms the basis of the present-bias dilemma, as detailed in

Section 6.2 below.

From the perspective of a policymaker, Proposition 10 is another irrelevance result:

the policymaker does not need to consider present bias when determining whether

or not a given policy is welfare improving. Instead, where present bias matters is in

determining whether or not a given policy is feasible (i.e., whether it obeys a budget

constraint). For example, consider a large interest rate subsidy on savings that is

financed by a small consumption tax. Though such a policy may be welfare improving

regardless of β and βE, the revenue collected by the consumption tax may only be

sufficient to cover the cost of the interest rate subsidy in an economy populated by

present-biased consumers. This is because present-biased agents will not take full

advantage of the policy, underusing the interest rate subsidy and overpaying the

consumption tax. Appendix C provides a toy model that formalizes this discussion.

6.2 The Present-Bias Dilemma

Together, Propositions 9 and 10 show that present-biased agents face a quandary.

On the one hand, present bias can be enormously costly (Proposition 9). On the

other hand, agents cannot use self-imposed financial commitment devices such as

asset illiquidity or penalty borrowing rates to reduce this welfare cost (Proposition

10). This is the present-bias dilemma.

Building on Proposition 8, Proposition 10 suggests that the fact that we see so

little commitment in the economy (Laibson, 2015) may not be such a puzzle after

all. As Proposition 10 shows, commitment in the form of financial penalties does not

improve IG agents’ welfare. Such commitment devices would only benefit the IG agent

if they benefit the standard exponential agent, and the standard exponential agent

would never choose to self-impose financial costs. For intuition, consider a penalty

borrowing rate. Though this penalty rate will reduce borrowing, the borrowing that

still occurs becomes more costly.48

48Supplementary Material Appendix F presents a numerical example of this tradeoff. More
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6.3 Potential Resolutions to the Present-Bias Dilemma: Bound-

aries of Model Results and Government Interventions

The present-bias dilemma is a fatalistic prediction in many ways. However, there

are two broad classes of potential resolutions to the present-bias dilemma that I en-

courage future research to explore. First, the model presented above may simply

be missing key features of reality that allow for agents to overcome the present-bias

dilemma. Second, the present-bias dilemma is about the inability for any individ-

ual to self-impose financial commitments that alleviate their present bias. However,

government interventions are fundamentally different from what a consumer can self-

impose, suggesting a potential role for policy in overcoming the present-bias dilemma.

These two classes of resolutions are discussed in turn below.

Alternative Assumptions on Technologies and Preferences. I start by dis-

cussing various ways in which the model could be modified in order to potentially

break the present-bias dilemma. In doing so, this section identifies possible short-

comings of the results presented thus far.

To begin, recall that the inability for agents to create effective commitment devices

relates to Proposition 3, which shows that the relative overconsumption caused by

present bias is constant over the state space and depends only on β, βE, and γ. Any-

thing that breaks this constant-relative-overconsumption property may allow agents

to develop effective commitment devices.

Perhaps the most obvious way to break this constant-relative-overconsumption

property is by departing from Assumption 1. As discussed in Section 5.3, reintroduc-

ing binding hard constraints explicitly restricts the agent’s choice set at b, thereby

reducing the overconsumption that can otherwise undermine commitment.

An indirect critique of Assumption 1 is that the model ignores the possibility

of discrete costs in switching from one borrowing technology to another. Recall

that the interest rate schedule in equation (2) is quite flexible in that it allows the

broadly, this general intuition is supported by the evidence in John (2020), who documents that
even in situations where researchers are able to induce subjects to take up a commitment device, it
frequently fails. Additionally, nothing in this paper says that a demand for financial commitment
devices cannot exist, only that present bias alone may not be the reason for that demand.
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marginal interest rate to jump up as agents borrow more. Despite this flexibility, the

interest rate schedule in equation (2) still implicitly assumes that there are no fixed

switching costs in transitioning from one credit technology to the next. While the

model can be extended to introduce these sorts of discrete switching costs (using the

HJB Variational Inequalities discussed in Section 7.1 and Appendix D.1), Assumption

1 will only continue to apply if the agent still has some other technology that they

could also potentially use to increase marginal consumption, such that they continue

to not face a hard cap on their consumption choices at any time t.49

While the model that I study is rich in many dimensions, another simplification

worth highlighting is that I model utility flows as coming from a single, frictionless,

notional consumption good (Laibson et al., 2022). In particular, the baseline model

does not consider “lumpy” decisions that are subject to adjustment frictions, such

as the purchase of durable goods. In Appendix D.2 I discuss how to incorporate a

“lumpy” illiquid durable, like a house, that enters utility in a Cobb-Douglas fashion.

On the one hand, the results presented above broadly continue to hold in this case:

present bias does not affect the IG agent’s demand for the illiquid durable good (anal-

ogous to Proposition 8), while present bias does continue to cause overconsumption

of the nondurable good (analogous to Proposition 3, though with a slightly different

scaling factor). On the other hand, the economic interpretation is different: it’s not

that present bias causes the overconsumption of all goods, but only the goods for

which each self has direct control (i.e., the nondurables).50,51

Yet another boundary of the results presented thus far is that they may fail to

hold under less restrictive equilibrium assumptions and/or when present bias is com-

49Note too that if the switching costs are effort-based costs then IG agents may procrastinate,
which may then introduce a beneficial role for certain commitment devices that limit such procras-
tination. See Laibson et al. (2023a) for a detailed analysis of procrastination in a model of mortgage
refinancing with IG agents, similar to the consumption-saving environment studied here.

50While I don’t explore it in the current paper, this analysis also raises questions for future research
related to the substitutability of durables and nondurables. To consider an extreme case for exposi-
tion, if nondurables and illiquid durables are perfect complements, then the agent’s illiquid durable
purchases will constrain their future nondurable purchases and hence eliminate the overconsumption
of nondurables.

51Similar to the discussion in the above paragraph on discreteness in borrowing technologies, while
results can be extended to allow for lumpiness in some goods, I still assume that there is another
good (the nondurable) that can be adjusted smoothly.
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bined with boundedly rational optimization. For example, non-Markov or boundedly

rational equilibria may feature “pseudo hard constraints” such as mental accounts

(Thaler, 1985) and personal rules (Ainslie, 1992; Bernheim et al., 2015) that act

similarly to binding hard constraints in placing bright-line restrictions on agents’

overconsumption. My focus on Markov-perfect equilibria also implicitly restricts the

types of commitments that agents can make. For instance, while directly committing

to the β = 1 consumption policy function would benefit IG agents, it is not per-

mitted in my model.52 Relatedly, recall the discussion in Sections 3.3 and 4 that I

construct IG equilibria using the û agent, and I focus on equilibria with continuous

value functions. Alternatively, non-IG models of present bias are known to exhibit

value-function discontinuities and corresponding consumption pathologies that break

the constant-relative-overconsumption property.

The welfare cost of present bias can also be reduced to the extent that agents

can alter the parameters underlying τ in equation (21); namely β, βE, and γ. In

particular, if γ > 1 and agents are at least partially naive, then the welfare cost

of present bias can be reduced by educating agents about their present bias (i.e., by

making naifs more sophisticated). In the above example of β = 0.5 and γ = 2, turning

a naif (βE = 1) into a sophisticate (βE = β) reduces the welfare cost of present bias

from 17.2% to 11.1%.

Finally, the results in this paper are derived using IG preferences, which feature

a “psychological present” that is unrealistically short (i.e., dt). While Laibson and

Maxted (2023) show that the IG specification closely approximates models in which

the duration of “now” is psychologically appropriate, this approximation result is only

shown in an environment that is simpler than the model considered here. Additionally,

I emphasize that I only study the consumption-saving domain. While I hope that

many of the intuitions developed in this paper will prove helpful in other contexts,53

this is a question for future research.

52For the interested reader, building on earlier arguments in e.g. Laibson (1994), I conjecture
that this sort of equilibrium can indeed be supported by the following (subgame-perfect) trigger
strategy for the IG agent: follow the standard exponential agent’s policy functions unless a past self
has deviated, in which case revert to the Markov equilibrium. Since each self lives for a vanishingly
short amount of time, no self will want to deviate from the standard exponential agent’s behavior.

53See e.g. Niu (2023) for an interesting application to work effort over time.
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Government Interventions. I now discuss the role that policymakers may play

in alleviating the welfare costs of present bias.

One reasonable contention is that policymakers could break Assumption 1 by

tightening borrowing limits through regulations that eliminate the market for unse-

cured credit. However, I would caution that the results in this paper also suggest that

such a policy may be precarious. Specifically, while completely eliminating all markets

for unsecured credit may indeed be welfare improving for present-biased agents, so

long as similar markets continue to exist in the informal economy (at a higher cost),

then Proposition 10 implies that agents will be made worse off by the elimination

of regulated credit markets. This line of reasoning similarly nuances the conclusions

of Laibson (1997) on the harmful effects of liquidity-enhancing financial innovation.

To the extent that financial innovation simply lowers the cost of borrowing, as op-

posed to allowing for a new level of borrowing that was previously impossible, then

such innovation will actually benefit IG agents (and hence should not necessarily be

discouraged by policymakers).

Still, it is important to emphasize that policymakers do have a potential role

to play in helping individuals overcome the present-bias dilemma. This is because

government interventions are fundamentally different from what a consumer can self-

impose. Policymakers have not only the ability to impose financial disincentives in the

form of taxes, but also to redistribute tax revenues back to consumers. Intuitively,

while financial disincentives alone will not improve welfare (Proposition 10), when

such disincentives are combined with revenue-redistribution in order to offset the

added costs of those disincentives, then agents can be made better off.54 This point is

formalized in Appendix C, which presents a toy model in which the combination of a

consumption tax alongside a savings subsidy can improve the welfare of present-biased

agents.

54See e.g. Moser and Olea de Souza e Silva (2019) and Beshears et al. (2022b) for insightful
analyses. Note that while penalty-plus-redistribution policies could also be implemented by private
institutions, as it is the pooling of consumers that is essential, Laibson (1997) discusses why such
schemes may be difficult for the private sector to implement. Additionally, political economy consid-
erations are beyond the scope of this paper, but are important for understanding how governments
can respond to the biases of their constituents.
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7 Model Extensions and Numerical Methods

7.1 Model Extensions

Many of the results in this paper will continue to hold in even richer environments

than the baseline model in Section 3. I discuss some relevant extensions here. These

extensions are not mutually exclusive, and can typically be stacked together.

Liquid and Illiquid Assets. The baseline model has only a single liquid and

illiquid asset, but results will continue to apply if the agent has access to multiple

assets of varying return and liquidity properties. The model can also allow for time-

varying and stochastic expected returns.

Second, the baseline model assumes that the illiquid asset can only be adjusted

stochastically at rate λa. An alternative setup is to model adjustment decisions as

an optimal-stopping (option-value) problem, where households always maintain the

option of adjusting their illiquid wealth. In this case, equilibrium is characterized

using HJB Variational Inequalities instead of standard HJB equations.55 However,

results continue to apply. See Appendix D.1 for details. Similar optimal-stopping

models can also be used to incorporate consumer bankruptcy.

Third, the illiquid asset is a strictly financial asset from which the agent derives

no utility. This is a reasonable assumption for some illiquid assets (e.g., retirement

accounts), but not for others (e.g., houses). As already mentioned above, Appendix

D.2 presents the case in which the illiquid asset is a durable, like a house, that enters

the utility function via a Cobb-Douglas aggregator. This case is still tractable with

IG preferences, but the closed-form solutions are slightly different because illiquid

housing affects the agent’s risk aversion (Flavin and Nakagawa, 2008).

β Heterogeneity. In any population there is very likely to be heterogeneity in β and

βE. Previously, modeling such heterogeneity was computationally difficult because

it meant that an already sensitive model (see footnote 1) had to then be solved

repeatedly for different levels of β and βE. Now, the results in this paper imply

55For other papers that use HJB Variational Inequalities, see Guerrieri et al. (2020), McKay and
Wieland (2021), and Laibson et al. (2023a).
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that preference heterogeneity in β and βE comes “for free.” Specifically, whenever

Assumption 1 holds then the policy and value functions of a present-biased agent

can be expressed in closed form based on those of the standard exponential agent.

Computationally, this means that the model needs to be solved only once for the

standard exponential agent. Then, introducing preference heterogeneity in β and βE

takes just a few extra lines of code and almost no additional runtime.

Non-Stationary Environments. The baseline model focuses on a stationary envi-

ronment, whereas the existing literature on present bias often analyzes non-stationary

lifecycle considerations such as retirement saving. The model and results can be ex-

tended to non-stationary settings in order to capture lifecycle features such as age-

varying income and mortality processes.

Additional Behavioral Biases. The tractability of IG preferences means that

present bias can be modeled jointly with other types of behavioral biases, such as non-

rational expectations (e.g., Bordalo et al., 2018; Maxted, 2024) or bounded rationality

(e.g., Gabaix, 2023; Ilut and Valchev, 2023). Here, the point of comparison for the

IG agent is no longer the standard exponential agent, but rather an agent without

present bias (β = 1) but with the other behavioral biases.

7.2 Numerical Methods

For applied researchers that intend to utilize the results in this paper, I end by

providing a brief discussion of numerical methods.

Continuous-Time Algorithm. Models of the type presented in Section 3 typi-

cally require numerical solutions, and algorithms based on finite difference methods

are a common way to solve these sorts of HJB equations.56 Barles and Sougani-

dis (1991) prove that a finite difference scheme converges to the solution of an HJB

equation whenever three conditions are met: (i) monotonicity; (ii) stability; and (iii)

56For details, readers are encouraged to examine the extensive resources in Achdou et al. (2022).
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consistency. When a finite difference scheme is applied directly to the Bellman equa-

tion of an IG agent, however, the monotonicity property may not be satisfied. To fix

this problem, I develop a numerical algorithm for reestablishing a convergent finite

difference scheme that follows from Proposition 1. First, solve the HJB equation of

the time-consistent û agent. Second, use the û agent to back out the IG agent’s

intrapersonal equilibrium. Appendix B provides details.

Discrete-Time Approximation. For researchers using discrete-time models, the

closed-form expressions that I provide in continuous time can be viewed as approx-

imate results in discrete time. Indeed, Laibson and Maxted (2023) show that the

continuous-time IG specification provides a close approximation to discrete-time mod-

els that are written with short period lengths. So, researchers wanting a simple back-

of-the-envelope way to study the robustness of their models’ predictions to present

bias can use these closed-form expressions to approximate the behavior of present-

biased agents in discrete time.

8 Conclusion

I present a new set of continuous-time methods for tractably modeling consumers

with present bias. I use this methodological innovation to analytically characterize

the effect of present bias on consumption-saving decisions and welfare. Along the way

I uncover a variety of new findings, many of which diverge from conventional wisdom

on present bias. These include an irrelevance result that present bias may not affect

the demand for illiquid assets, and the present-bias dilemma.

Given both the large welfare cost of present bias and the difficulty that individu-

als face in alleviating this cost, one particularly important subject for future analysis

is the extent to which policy interventions can mitigate the present-bias dilemma.

More broadly, the IG methods presented in this paper open many pathways for

future research by enabling present bias to be tractably incorporated into frontier

consumption-saving models.
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**ONLINE APPENDIX**

A Proofs

Throughout this appendix I assume that the reader understands the construction of

the û agent. Details of the û construction are given in Section 4, and in Harris and

Laibson (2013).

A.1 Proof of Proposition 1

I now prove value function equivalence between the IG agent and the û agent. The

proof presented below is based on the proof in Harris and Laibson (2013) (see also

Laibson and Maxted (2023) for a related proof).

Before continuing, I emphasize that most of the complexity in this proof arises

when b binds in equilibrium. The proof simplifies considerably when b does not bind

in equilibrium, as assumed in most of the paper (see Assumption 1).

The û Agent’s Bellman Equation. To begin, recall from equation (18) that the

optimizing û agent faces a choice at the borrowing constraint b. The û agent can

either set ĉ ≤ ψ(y + r(b)b) or ĉ = y + r(b)b. The former choice only earns utility û+,

but allows the agent to save away from the constraint. The latter choice earns the

“utility boost,” but requires the agent to stay at b. I will refer to the former choice

as “continuing,” and the latter choice as “stopping.”

Lemma 11. The û agent will choose to continue at b when v̂b(x) > 1
β
(y + r(b)b)−γ.

Otherwise, the û agent will choose to stop.

Proof. The problem of the û agent at b can be expressed as:

ρv̂(b, a, y) = max
{
u(y + r(b)b), max

ĉ≤ψ(y+r(b)b)
û+(ĉ) + v̂b(x)(y + r(b)b− ĉ)

}
+ v̂a(x) (raa) +

1

2
v̂aa(x)(aσa)2 + λa(v̂∗(x)− v̂(x))

+
∑
y′ 6=y

λy→y
′
(v̂(b, a, y′)− v̂(b, a, y)), (22)
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where v̂∗(x) = max
b′,a′

v̂(b′, a′, y) such that constraint (5) holds.

Intuitively, the first line of equation (22) captures the choice that the û agent

faces at b. The left branch of the first line is the “stopping” option: the agent sets

ĉ = y + r(b)b and earns “boosted” utility u(y + r(b)b). The right branch of the first

line is the “continuing” option: the agent chooses ĉ ≤ ψ(y + r(b)b) and earns utility

û+(ĉ), but also accumulates liquid wealth (dbt ≥ 0), which yields the additional term

v̂b(x)(y + r(b)b− ĉ).
In the right branch the û agent chooses ĉ such that û′+(ĉ) = v̂b(x), which implies

ĉ = ψ(βv̂b(x))−
1
γ . Using this property, one can show that the û agent is indifferent

between the two choices when v̂b(x) = 1
β
(y + r(b)b)−γ (which implies ĉ(x) = ψ(y +

r(b)b)). The û agent chooses to “continue” when v̂b(x) > 1
β
(y+r(b)b)−γ, in which case

the û agent optimally sets ĉ ≤ ψ(y+r(b)b) and hence saves away from b. Alternatively,

if v̂b(x) < 1
β
(y+r(b)b)−γ then the û agent chooses to “stop,” in which case the û agent

optimally sets ĉ = y+r(b)b and remains constrained at b. At the point of indifference,

I assume that the û agent stops.

Now, the û agent’s complete Bellman equation can be expressed as follows:

ρv̂(x) = û(ĉ(x), x) + v̂b(x) (y + r(b)b− ĉ(x))

+ v̂a(x) (raa) +
1

2
v̂aa(x)(aσa)2 + λa(v̂∗(x)− v̂(x))

+
∑
y′ 6=y

λy→y
′
(v̂(b, a, y′)− v̂(b, a, y)), (23)

subject to the optimality conditions:

ĉ(x) =


ψ(βv̂b(x))−

1
γ if b > b

ψ(βv̂b(x))−
1
γ if b = b and v̂b(x) > 1

β
(y + r(b)b)−γ

y + r(b)b if b = b and v̂b(x) ≤ 1
β
(y + r(b)b)−γ

, and (24)

v̂∗(x) = max
b′,a′

v̂(b′, a′, y) s.t. constraint (5) holds, (25)
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and the global bounds:

u (min{y}+ r(b)b)

ρ
≤ v̂(x) ≤ v̌(x), (26)

where Lemma 11 allows for the û agent’s consumption to be defined as in equation

(24). Note that the first two lines of equation (24) are equivalent to the û agent

choosing ĉ such that û′+(ĉ) = v̂b(x), while the third line of equation (24) imposes that

ĉ = y + r(b)b if the û agent is at b and chooses to stop.

The global bounds in equation (26) are again intuitive. First, the (optimizing) û

agent can always choose a consumption path that yields an exponentially discounted

value of (at least) u(min{y}+r(b)b)
ρ

, and therefore the equilibrium value function v̂(x) ≥
u(min{y}+r(b)b)

ρ
.57 Second, since the û agent is identical to the standard exponential

agent except for having a (weakly) lower utility function, then v̂(x) ≤ v̌(x).

Proof Intuition. Having now spelled out the IG agent’s Bellman equation (equa-

tions (11) – (14)) and the û agent’s Bellman equation (equations (23) – (26)), the

rest of the proof shows that these two Bellman equations have the same solutions.

The basic intuition for this proof is as follows. Assume that v(x) = v̂(x) and

b > b. Then, equations (11) and (23) can be combined to yield:

u(c(x))− vb(x)c(x) = û+(ĉ(x))− v̂b(x)ĉ(x).

Utility function û is reverse-engineered so that this condition holds.

The IG Agent: A Modified Bellman Equation. Following Theorem 2 of Harris

and Laibson (2013), let f+(α) be the unique value of c satisfying u′(c) = α. Let

h+(α) = u(f+(βα))−αf+(βα). Since the IG agent sets u′(c(x)) = βvb(x) for b > b, it

is the case that h+(vb(x)) = u(f+(βvb(x)))− vb(x)f+(βvb(x)) = u(c(x))− vb(x)c(x).

57Similar to the argument in Harris and Laibson (2013), let ĉequiv be the consumption level
such that û+(ĉequiv) = u (min{y}+ r(b)b). For all b > b the û agent can set their consumption
to ĉequiv in order to earn a utility flow of u (min{y}+ r(b)b). At b the û agent can set their
consumption to y + r(b)b in order to earn a utility flow of u (y + r(b)b), which is weakly greater
than u (min{y}+ r(b)b).
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Next, let f(α, x) be the unique value of c satisfying u′(c) = max{α, u′(y+ r(b)b)}.
Let h(α, x) = u(f(βα, x)) − αf(βα, x). Again, since the IG agent sets u′(c(x)) =

max
{
βvb(x), u′(y+r(b)b)

}
for b = b, it is the case that h(vb(x), x) = u(f(βvb(x), x))−

vb(x)f(βvb(x), x) = u(c(x))− vb(x)c(x).

Define:

h(α, x) =

h+(α) if b > b

h(α, x) if b = b
.

Function h can be used to rewrite the Bellman equation of the IG agent (equations

(11) – (14)) as follows:

ρv(x) = h(vb(x), x) + vb(x) (y + r(b)b)

+ va(x) (raa) +
1

2
vaa(x)(aσa)2 + λa (v∗(x)− v(x))

+
∑
y′ 6=y

λy→y
′
(v(b, a, y′)− v(b, a, y)), (27)

subject to the optimality condition:

v∗(x) = max
b′,a′

v(b′, a′, y) s.t. constraint (5) holds, (28)

and the global bounds:

u (min{y}+ r(b)b)

ρ
≤ v(x) ≤ v̌(x). (29)

The û Agent: A Modified Bellman Equation. Again following Harris and

Laibson (2013) for the û agent, let f̂+(α) be the unique value of ĉ satisfying û′+(ĉ) = α.

Let ĥ+(α) = û+(f̂+(α))− αf̂+(α). Since the û agent sets û′+(ĉ(x)) = v̂b(x) for b > b,

it is the case that ĥ+(v̂b(x)) = û+(f̂+(v̂b(x)))− v̂b(x)f̂+(v̂b(x)) = û+(ĉ(x))− v̂b(x)ĉ(x).

Next, let f̂(α, x) be the unique value of ĉ satisfying û′+(ĉ) = α if ĉ < ψ(y +

r(b)b), and let f̂(α, x) = y + r(b)b otherwise. Let ĥ(α, x) = û(f̂(α, x), x)− αf̂(α, x).

Again, now using Lemma 11, it is the case that ĥ(vb(x), x) = û(f̂(vb(x), x), x) −
vb(x)f̂(vb(x), x) = û(ĉ(x), x)− v̂b(x)ĉ(x).
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Define:

ĥ(α, x) =

ĥ+(α) if b > b

ĥ(α, x) if b = b
.

Function ĥ can be used to rewrite the Bellman equation of the û agent (equations

(23) – (26)) as follows:

ρv̂(x) = ĥ(v̂b(x), x) + v̂b(x) (y + r(b)b)

+ v̂a(x) (raa) +
1

2
v̂aa(x)(aσa)2 + λa(v̂∗(x)− v̂(x))

+
∑
y′ 6=y

λy→y
′
(v̂(b, a, y′)− v̂(b, a, y)), (30)

subject to the optimality condition:

v̂∗(x) = max
b′,a′

v̂(b′, a′, y) s.t. constraint (5) holds, (31)

and the global bounds:

u (min{y}+ r(b)b)

ρ
≤ v̂(x) ≤ v̌(x). (32)

Value Function Equivalence. From inspection, we can see that the modified

Bellman equation of the IG agent (equations (27) – (29)) is identical to the modified

Bellman equation of the û agent (equations (30) – (32)) if and only if h(α, x) and

ĥ(α, x) are the same. This can be confirmed directly. Hence, the IG agent and the û

agent have the same modified Bellman equation.

The final point to discuss relates to what is meant by value function v that solves

the IG agent’s Bellman equation. As mentioned in the main text and stated most

fully in Harris and Laibson (2011), a solution is a viscosity solution to the IG agent’s

modified Bellman equation (where consumption choice c has been substituted out).

Once a value function v has been obtained, then c(x) is a consumption policy function

if and only if it satisfies equation (12), and b′(x) and a′(x) are asset allocation policy

functions if and only if they satisfy equation (13).58

58As discussed in Harris and Laibson (2011), if v has kinks then the consumption choice in equation
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A.2 Proof of Proposition 2

Whenever b < bn, the proof below follows the restriction in Section 3.2 and resets

the borrowing limit to b = bn. The proof is split into three steps. First, I show

that being constrained at bn cannot be an equilibrium outcome for the sophisticated

IG agent (nor the û agent). Second, I show that for any β ∈ (0, 1], there exists an

unconstrained equilibrium. Third, I discuss naivete.

As a first step, I show that the (sophisticated) IG agent will not be constrained at

bn along the equilibrium path. The argument for this step is relatively straightforward

— the IG agent will avoid being constrained at bn, since the possibility of being at bn

and then switching to the lowest income state of min{y} (and hence needing to set

ct = 0) would force the agent to incur a utility flow of u(0) = −∞ when γ ≥ 1.

In more detail, recall first the integrability assumption in Section 3.2 that the

sophisticated IG agent’s value function vt must not be negatively infinite when bt > bn.

So, I need to show that when bt > bn, the possibility of ever being constrained at

bn in the future leads to a value of −∞ and hence does satisfy this equilibrium

restriction. To do so, note first that hitting the borrowing constraint of bn when

the income state is min{y} is not allowed: this requires the agent to set c = 0 (to

avoid their liquid wealth drifting below bn) and hence generates a −∞ utility flow

whenever γ ≥ 1. Next, note that if the IG agent is ever constrained at bn, then even

if their current income state is above min{y}, the possibility of switching to income

state min{y} still means that their value function is negatively infinite.59 Hence, to

satisfy the integrability assumption, the IG agent cannot be constrained at bn along

the equilibrium path. The same argument also applies for the û agent.

Having ruled out equilibria in which the sophisticated IG agent is ever constrained

at bn, the second step is to argue that an unconstrained equilibrium does still exist for

any β ∈ (0, 1]. This essentially follows from the value function equivalence result in

Proposition 1. Starting with the û agent, they can always simply set ĉt = yt− r(bt)bt
(such that dbt = 0), and for any bt > bn this will yield an exponentially discounted

value that is not negatively infinite. Since the û agent is an optimizer, it must be

(12) may not be uniquely defined at the kink points.
59Recall that the model assumes λy→y

′ ∈ (0,∞), so every income state can switch to min{y}.
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that v̂(x) is weakly greater than the value of this simple strategy, and hence that the

û agent can always obtain a value function that is not negatively infinite whenever

b > bn. Then, by the value function equivalence result in Proposition 1, this effectively

also means that the sophisticated IG agent can obtain an equilibrium value function

that is not negatively infinite whenever b > bn (for any β ∈ (0, 1]).

The argument in the above paragraph is not entirely complete, however, because

it makes the implicit assumption that the û agent’s value function v̂ is indeed a

solution to the û agent’s Bellman equation (defined in Appendix A.1). While I don’t

attempt a formal proof beyond the details provided in Harris and Laibson (2013), the

mathematics literature contains general results showing that the value function from

a sequence problem is also a viscosity solution to the corresponding HJB equation.

Note too that I only discuss this issue here, after having first restricted the equilibrium

to b > bn and hence ruling out any potential utility-function discontinuities for the û

agent (i.e., their utility function is always given by û+(ĉ) in equilibrium, which is just

an affine transformation of CRRA utility). See Harris and Laibson (2013) for a more

general statement, including situations where b binds along the equilibrium path.

Finally, naivete is more delicate because the naif could perceive that future selves

will follow an unconstrained equilibrium, but then not do so in reality. From Propo-

sition 3 (below), a sophisticate overconsumes by factor 1
ψ

, while a complete naif

(βE = 1) overconsumes by β−
1
γ . So, ensuring that the naif consumes less than the

sophisticate with β ≈ 0 implies that a complete naif must have β >
(
γ−1
γ

)γ
.

A.3 Proof of Proposition 3

From equation (15), the (potentially naive) IG agent sets u′(c(x)) = βvEb (x) when

vEb (x) exists (see footnote 58). By Proposition 1, one can construct a û agent using βE

such that vE(x) = v̂(x), and this û agent chooses consumption such that û′+(ĉ(x)) =

v̂b(x). This implies that v̂b(x) = (ψE)γ

βE
ĉ(x)−γ, where ψE = γ−(1−βE)

γ
.

Using the property that v̂(x) = vE(x):

u′(c(x)) = β
(ψE)γ

βE
ĉ(x)−γ.
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Rearranging gives

c(x) =

(
βE

β

) 1
γ 1

ψE
× ĉ(x).

To complete the proof, note that the û agent behaves identically to the standard

exponential agent when Assumption 1 holds. This implies that the û agent sets

ĉ(x) = č(x) regardless of β and βE. Therefore c(x) =
(
βE

β

) 1
γ 1
ψE
× č(x), as desired.

To see when consumption is increasing in naivete, consider:

∂c(x)

∂βE
∝ 1

γ

(
βE

β

) 1−γ
γ 1

β

1

ψE
−
(
βE

β

) 1
γ 1

ψE
1

γ − (1− βE)

∝ 1

βE
− 1

ψE

For βE < 1, one can show that ψE > βE when γ > 1, and ψE < βE when γ < 1.

Thus, consumption is increasing in naivete when γ > 1, and decreasing in naivete

when γ < 1.

A.4 Proof of Proposition 6

Generalizing the Proposition for Naivete. First, I extend Proposition 6 to the

case of naivete. See Tobacman (2007) for a discrete-time analysis, and Laibson et al.

(2023a) for an application of this result.

Proposition. Let ς(bt) denote the marginal interest rate that the agent earns on their

liquid wealth of bt (see footnote 38 for details). Whenever c(xt) and r(bt) are locally

differentiable in b, consumption satisfies the following Euler equation:

Et (du′(c(xt))) /dt

u′(c(xt))
=

[
ρ+

(
(1− βE)

(
β

βE

) 1
γ

+ γ

(
1−

(
β

βE

) 1
γ

))
cb(xt)

]
− ς(bt).

(33)

Equation (33) simplifies in three special cases: complete sophistication (βE = β),

complete naivete (βE = 1), and log utility (γ = 1). With complete sophistication
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or γ = 1, the Euler equation in (20) is recovered. With complete naivete, the Euler

equation is:

Et (du′(c(xt))) /dt

u′(c(xt))
=
[
ρ+ γ

(
1− β

1
γ

)
cb(xt)

]
− ς(bt).

As in the case with sophistication, the effective discount rate in brackets in equation

(33) varies with the instantaneous MPC of the IG agent.

Proof of Sophisticated Case (Proposition 6). This proof extends the β = 1

case of Achdou et al. (2022). A similar result is given in Harris and Laibson (2004).

Taking a derivative of (11) with respect to b gives

ρvb(x) = u′(c(x))cb(x) + vbb(x) (y + r(b)b− c(x))

+ vb(x) (r′(b)b+ r(b)− cb(x))

+ vab(x) (raa) +
1

2
vaab(x)(aσa)2 + λa (v∗b (x)− vb(x))

+
∑
y′ 6=y

λy→y
′
(vb(b, a, y

′)− vb(b, a, y)).

Applying the first-order condition (12):

[ρ− (r′(b)b+ r(b)) + (1− β)cb(x)]u′(c(x)) = u′′(c(x))cb(x) (y + r(b)b− c(x))

+ u′′(c(x))ca(x) (raa)

+
1

2

(
u′′′(c(x))(ca(x))2 + u′′(c(x))caa(x)

)
(aσa)2

+ λa (u′(c(b′, a′, y))− u′(c(b, a, y)))

+
∑
y′ 6=y

λy→y
′
(u′(c(b, a, y′))− u′(c(b, a, y))).
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Applying Itô’s Lemma to u′(c(xt)) gives

Et[du′(c(xt))]/dt = u′′(c(xt))cb(xt) (yt + r(bt)bt − c(xt))

+ u′′(c(xt))ca(xt) (raat)

+
1

2
u′′(c(xt))

(
caa(xt)(atσ

a)2
)

+
1

2
u′′′(c(xt))(ca(xt)atσ

a)2

+ λa (u′(c(b′t, a
′
t, yt))− u′(c(bt, at, yt)))

+
∑
y′ 6=yt

λyt→y
′
(u′(c(bt, at, y

′))− u′(c(bt, at, yt))).

Plugging this in to the above equation results in

[ρ− (r′(bt)bt + r(bt)) + (1− β)cb(xt)]u
′(c(xt)) = Et[du′(c(xt))]/dt.

Rearranging and using the property that ς(bt) = r′(bt)bt + r(bt) gives equation (20).

Proof of Generalized Proposition with Naivete. The proof begins the same

as above, except now the agent’s value function is based on their expected behavior.

Taking a derivative of the expected value function with respect to b gives

ρvEb (x) = u′(cE(x))cEb (x) + vEbb(x)
(
y + r(b)b− cE(x)

)
+ vEb (x)

(
r′(b)b+ r(b)− cEb (x)

)
+ vEab(x) (raa) +

1

2
vEaab(x)(aσa)2 + λa

(
vEb
∗
(x)− vEb (x)

)
+
∑
y′ 6=y

λy→y
′
(vEb (b, a, y′)− vEb (b, a, y)).
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Applying the first-order condition (15) for the naif’s realized consumption:

[ρ− (r′(b)b+ r(b))]u′(c(x)) + cEb (x)
(
u′(c(x))− βu′(cE(x))

)
= u′′(c(x))cb(x)

(
y + r(b)b− cE(x)

)
+ u′′(c(x))ca(x) (raa)

+
1

2

(
u′′′(c(x))(ca(x))2 + u′′(c(x))caa(x)

)
(aσa)2

+ λa (u′(c(b′, a′, y))− u′(c(b, a, y)))

+
∑
y′ 6=y

λy→y
′
(u′(c(b, a, y′))− u′(c(b, a, y))).

Next, since the naif perceives that u′(cE(x)) = βEvEb (x), while equation (15) imposes

that u′(c(x)) = βvEb (x), we have βu′(cE(x)) = βEu′(c(x)). Using this:

[
ρ− (r′(b)b+ r(b)) + (1− βE)cEb (x)

]
u′(c(x)) = u′′(c(x))cb(x)

(
y + r(b)b− cE(x)

)
+ u′′(c(x))ca(x) (raa)

+
1

2

(
u′′′(c(x))(ca(x))2 + u′′(c(x))caa(x)

)
(aσa)2

+ λa (u′(c(b′, a′, y))− u′(c(b, a, y)))

+
∑
y′ 6=y

λy→y
′
(u′(c(b, a, y′))− u′(c(b, a, y))).

As above, applying Itô’s Lemma to u′(c(xt)) gives

Et[du′(c(xt))]/dt = u′′(c(xt))cb(xt) (yt + r(bt)bt − c(xt))

+ u′′(c(xt))ca(xt) (raat)

+
1

2
u′′(c(xt))

(
caa(xt)(atσ

a)2
)

+
1

2
u′′′(c(xt))(ca(xt)atσ

a)2

+ λa (u′(c(b′t, a
′
t, yt))− u′(c(bt, at, yt)))

+
∑
y′ 6=yt

λyt→y
′
(u′(c(bt, at, y

′))− u′(c(bt, at, yt))).
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Plugging this in to the above equation results in

[
ρ− (r′(b)b+ r(b)) + (1− βE)cEb (x)

]
u′(c(x)) =u′′(c(x))cb(x)

(
c(x)− cE(x)

)
+ Et[du′(c(xt))]/dt.

The naif perceives they set u′(cE(x)) = βEvEb (x) while they actually set u′(c(x)) =

βvEb (x), which implies cE(x) =
(

β
βE

) 1
γ
c(x). This gives

[
ρ− (r′(bt)bt + r(bt)) + (1− βE)

(
β

βE

) 1
γ

cb(xt)

]
u′(c(xt)) =u′′(c(xt))cb(xt)c(xt)

(
1−

(
β

βE

) 1
γ

)
+ Et[du′(c(xt))]/dt.

Using the property that −γ = u′′(c(x))c(x)
u′(c(x))

and ς(bt) = r′(bt)bt + r(bt), this can be

rearranged to yield

Et[du′(c(xt))]/dt
u′(c(xt))

=

[
ρ+

(
(1− βE)

(
β

βE

) 1
γ

+ γ

(
1−

(
β

βE

) 1
γ

))
cb(xt)

]
− ς(bt),

which is equation (33) as desired.

A.5 Proof of Proposition 7

Notationally, since Proposition 7 simplifies the economic environment there is now

just a single state variable, which is liquid wealth b. This will be reflected in my

notation below (e.g., the consumption function will be written as c(b)).

Throughout this proof, since Assumption 1 holds the û agent consumes identically

to the standard exponential agent: ĉ(b) = č(b).

First consider the case where r ≤ ρ. The Euler equation of the standard expo-

nential agent implies that č(b) ≥ y + r(b)b for all b ≥ 0 (see Achdou et al. (2022)).

Since the sophisticated IG agent sets c(b) = 1
ψ
ĉ(b) = 1

ψ
č(b) (see Proposition 3), the

IG agent strictly dissaves for all b ≥ 0 when r ≤ ρ.

Next consider the case where r ∈ (ρ, ρ
β
). In this deterministic model the standard

exponential agent consumes according to č(b) = ρ−(1−γ)r
γ

(b + y
r
) for b ≥ 0 (see e.g.

Fagereng et al. (2019) for details). The IG agent therefore sets c(b) = 1
ψ
č(b) =
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ρ−(1−γ)r
γ−(1−β)

(b + y
r
) for b ≥ 0. One can show that s(b) = y + r(b)b − c(b) < 0 for b ≥ 0

whenever r < ρ
β
. Thus, the IG agent strictly dissaves for all b ≥ 0 when r ∈ (ρ, ρ

β
).

In both cases the IG agent strictly dissaves for all b ≥ 0. This means that the IG

agent dissaves at b = 0, completing the proof that s(0) < 0 whenever r < ρ
β
. This

holds regardless of how largeW(0) is (indeed, W doesn’t even show up in the proof).

Note that this proof does not rely on some sort of consumption discontinuity at

b = 0. The consumption function c(b) is continuous at b = 0. To show this, recall

that the IG agent’s value function is given by

ρv(b) = u(c(b)) + v′(b)(y + r(b)b− c(b)).

The IG agent sets u′(c(b)) = βv′(b). Therefore

ρv(b) = u(c(b)) +
c(b)−γ

β
(y + r(b)b− c(b)).

Since v(b) is continuous and r(b)b is continuous, c(b) is also continuous at b = 0.

A.6 Proof of Proposition 8

Equation (16) implicitly characterizes the illiquid asset policy functions b′(x) and

a′(x) for the (possibly naive) IG agent, and equation (25) characterizes these pol-

icy functions for the û agent. Based on the value function equivalence result in

Proposition 1 (using βE to construct the û agent), equations (16) and (25) imply

that the IG agent chooses the same illiquid asset policy functions as the û agent:

b′(x) = b̂′(x) and a′(x) = â′(x). When Assumption 1 holds the û agent behaves

identically to the standard exponential agent, and therefore b′(x) = b̂′(x) = b̌′(x) and

a′(x) = â′(x) = ǎ′(x).60

60In any cases where equations (16) and (25) admit multiple optimal choices, I assume that all
agents adopt the same tie-breaking rule.

65



A.7 Proof of Proposition 9

Step 1: Value Function Equivalence for the Naive Agent (γ 6= 1). Recall

that the û utility function is constructed so that the value function of the sophisticated

IG agent can be recast as the value function of the û agent. The first step of this

proof generalizes the û construction to allow for naivete. Specifically, I now construct

a utility function, denoted ˆ̂u, such that the realized value function of the (potentially

naive) IG agent can be recast as the value function of the exponential agent with

utility function ˆ̂u. I refer to this agent as the ˆ̂u agent.

Note that when the IG agent is naive (βE 6= β) their realized value function

does not equal their expected value function. As given in the main text, the ex-

pected continuation-value function is vEt = Et
[∫∞
t
e−ρ(s−t)u(cEs )ds

]
. Denote the real-

ized value function by

vRt = Et
[∫ ∞

t

e−ρ(s−t)u(cs)ds

]
.

vR is based on the naif’s realized consumption choices, while vE is based on their

perceived consumption choices.

Let ˆ̂u(c) = ξc1−γ−1
1−γ .61 This is a positive affine transformation of CRRA utility

function u(c) whenever ξ > 0. When this is the case, the ˆ̂u agent will behave identi-

cally to the standard exponential agent. Thus, I will directly use č(x) to refer to the

consumption of the ˆ̂u agent.

In order to generate value function equivalence between the (possibly naive) IG

agent and the ˆ̂u agent, I construct ˆ̂u so that the following condition holds for all b > b:

u(c(x))− vRb (x)c(x) = ˆ̂u(č(x))− ˆ̂vb(x)č(x). (34)

Condition (34) ensures that vR(x) = ˆ̂v(x) whenever Assumption 1 holds. See the

proof of Proposition 1 for details.

I want to solve for ξ such that equation (34) holds. From Proposition 3, note that

61The construction of ˆ̂u is simplified relative to the definition of û in equation (18) because this
proof assumes from the start that Assumption 1 holds.
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č(x) = αc(x), where α = ψE
(

β
βE

) 1
γ
. Additionally, the ˆ̂u agent sets č(x) such that

ξč(x)−γ = ˆ̂vb(x). Using these properties in equation (34) gives:

c(x)1−γ

1− γ
− ξα−γc(x)1−γ =

ξ(αc(x))1−γ

1− γ
− ξ(αc(x))1−γ.

This can be rearranged to yield:

ξ =
αγ

1− γ + αγ
.

Note that ξ = ψγ

β
in the case of sophistication (βE = β), in which case ˆ̂u(c) = û(c).

Step 2: The Effect of a Consumption Tax. I now introduce a constant perpet-

ual consumption tax of τ ∈ [0, 1). Given consumption tax τ , let č(x) denote the gross

consumption expenditure rate of the standard exponential agent. In other words,

the agent spends č to consume (1 − τ)č, with the rest going to taxes. Here I show

that a consumption tax of τ does not affect the standard exponential agent’s gross

consumption expenditure.

With no tax, the standard exponential agent maximizes v̌:

v̌(x) = Et
[∫ ∞

t

e−ρ(s−t)u(čs)ds

]
.

With a consumption tax, the standard exponential agent maximizes:

v̌(x; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
.

Note that u((1−τ)c) is a positive affine transformation of u(c). Thus, policy function

č(x) is unaffected by consumption tax τ . The only effect of the tax is that č(x) now

denotes gross consumption expenditure, whereas the agent only gets to consume

(1− τ)č(x) with the rest going to taxes.

Step 3: The Welfare Effect of Present Bias (γ 6= 1). Since ˆ̂u is a positive affine

transformation of u, the ˆ̂u agent behaves identically to the standard exponential agent.
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Additionally, value function equivalence implies that the realized value function of

the IG agent equals the value function of the ˆ̂u agent whenever b does not bind in

equilibrium: vR(x) = ˆ̂v(x). This was shown in Step 1 of this proof.

The final step is to derive the consumption tax τ that equates the realized value

function of the IG agent (vR(x)) with the value function of the standard exponential

agent facing a consumption tax (v̌(x; τ)). The realized value function of the IG agent

is:

vR(x) = ˆ̂v(x) = Et
[∫ ∞

t

e−ρ(s−t) ˆ̂u(ˆ̂cs)ds

]
. (35)

The value function of the standard exponential agent facing a consumption tax is:

v̌(x; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
. (36)

The key to this proof is to note that ˆ̂c(x) = č(x). Therefore the consumption path

in equation (35) is identical to the gross consumption expenditure path in equation

(36) (this property holds state by state, so it also holds in expectation). Thus, setting

equation (35) equal to equation (36) is as simple as finding the value of τ such that:

ˆ̂u(c) = u((1− τ)c).

This implies that ξ = (1− τ)1−γ. Rearranging gives

τ = 1−
(

αγ

1− γ + γα

) 1
1−γ

.

Special Case: γ = 1. In the special case of γ = 1 the naif and the sophisticate

behave identically (Proposition 3). The realized value function vR(x) is therefore in-

dependent of βE. So, I calculate the γ = 1 case under the assumption of sophistication

using the û agent.

I again derive the consumption tax τ that equates the realized value function of

the IG agent (vR(x)) with the value function of the standard exponential agent facing

a consumption tax (v̌(x; τ)). Similar to above, the realized value function of the IG
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agent is:

vR(x) = v̂(x) = Et
[∫ ∞

t

e−ρ(s−t)û(ĉs)ds

]
. (37)

The value function of the standard exponential agent facing a consumption tax is:

v̌(x; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
. (38)

Since ĉ(x) = č(x), the consumption path in equation (37) is identical to the gross

consumption expenditure path in equation (38). As above, I need to find the value

of τ such that:

û(c) = u((1− τ)c).

When γ = 1 this implies that − ln(β) + β−1
β

= ln(1− τ). Rearranging gives

τ = 1−
exp

(
β−1
β

)
β

.

The Effect of β and βE. Assume that 1− γ + γα > 0 so that τ is defined. First,

I show that τ is decreasing in α. The derivative

∂τ

∂α
=
−1

1− γ

(
αγ

1− γ + γα

) γ
1−γ
(

γαγ−1

1− γ + γα
− γαγ

(1− γ + γα)2

)
implies that

sgn

(
∂τ

∂α

)
= sgn(γ − 1)× sgn

(
1− α

1− γ + γα

)
, or equivalently

sgn

(
∂τ

∂α

)
= sgn(γ − 1)sgn(1− γ).

Thus, τ is always decreasing in α.
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The derivative of α with respect to β is:

∂α

∂β
=

ψE

γβE

(
β

βE

) 1−γ
γ

> 0.

As stated in the main text, this implies that ∂τ
∂β
< 0.

The derivative of α with respect to βE is:

∂α

∂βE
=

1

γ

(
β

βE

) 1
γ

− 1

γ

(
β

βE

) 1
γ ψE

βE
.

So, ∂α
∂βE

> 0 when βE > ψE, and ∂α
∂β
< 0 when βE < ψE. Since βE > ψE when γ < 1

(and vice versa), this implies that α is increasing in βE when γ < 1, and decreasing

in βE when γ > 1. This also implies that ∂τ
∂βE

< 0 when γ < 1, and ∂τ
∂βE

> 0 when

γ > 1. As stated in the main text, naivete increases the welfare cost of present bias

when γ > 1.

B Numerical Methods Theory

Barles and Souganidis (1991) show that a finite difference scheme converges to the

unique viscosity solution of an HJB equation as long as certain conditions hold. How-

ever, I show below that these conditions do not necessarily hold when an upwind finite

difference scheme is applied to the Bellman equation of the IG agent (see also Achdou

et al., 2022). Instead, the key algorithmic insight of this paper is that the following

two-step approach can be used to solve for the IG agent’s equilibrium. First, solve

the HJB equation of the time-consistent û agent. Second, compute the IG agent’s

equilibrium directly from the û agent using Proposition 1 and equations (12) and (13)

(or equations (15) and (16) if the agent is naive). I apply this algorithm to solve the

Aiyagari-Bewley-Huggett model in Supplementary Material Appendix E.

Failure of Monotonicity. Here I present a brief description of the problem. I

follow Tourin (2013)’s treatment of Barles and Souganidis (1991). For simplicity, I

assume here that income is deterministic with yt = y, and there is just a single liquid
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asset b.

Let G denote the discretized grid over liquid wealth b on which v(b) is solved

numerically. Assume this grid is uniformly spaced, and let ∆b denote the size of the

grid increment. At each gridpoint g ∈ G, define:

Sg = ρvg − u(cg)−
vg+1 − vg

∆b

(y + rbg − cg)+ − vg − vg−1

∆b

(y + rbg − cg)−,

where vg, vg+1, and vg−1 represent the value function at gridpoints g, g+ 1, and g− 1,

bg is the wealth level at gridpoint g, and cg is the consumption choice at gridpoint g.

For monotoncity to hold, Sg must be weakly decreasing in vg, vg+1, and vg−1. To

show that monotonicity may fail when β < 1, assume that y + rbg − cg < 0. In this

case, cg is defined implicitly by u′(cg) = β vg−vg−1

∆b
. Consider an increase in vg−1:

∂Sg
∂vg−1

= −u′(cg)
∂cg
∂vg−1

+
1

∆b

(y + rbg − cg)− +
vg − vg−1

∆b

∂cg
∂vg−1

= (1− β)
vg − vg−1

∆b

∂cg
∂vg−1

+
1

∆b

(y + rbg − cg)−,

where the property that u′(cg) = β vg−vg−1

∆b
is used to go from the first to the second

line.

If β = 1 then monotonicity holds: ∂Sg
∂vg−1

< 0 since the first term drops out and

y + rbg − cg < 0 by assumption.

If β < 1 then monotonicity may not hold. Since ∂cg
∂vg−1

> 0 the term (1 −
β)vg−vg−1

∆b

∂cg
∂vg−1

> 0 whenever β < 1. Now, it is possible for ∂Sg
∂vg−1

> 0, in which

case monotonicity does not hold.

The above example points to the difficulty of using finite difference methods to

solve directly for the equilibrium of the IG agent. Since this difficulty only arises when

β < 1, one can instead first solve for the equilibrium of the û agent. Given a solution

to the û agent, the corresponding equilibrium of the IG agent can then be backed

out: Proposition 1 implies that v(x) = v̂(x), and equations (12) and (13) define c(x),

b′(x), and a′(x). In the case of the one-step extension to naivete, equations (15) and

(16) can be used instead.
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C Present Bias and Policy: A Simple Example

This Appendix provides a simple example to show how government interventions can

improve the equilibrium of an economy with present-biased agents.62 I study a simple

“Cake-Eating” model of consumption-saving behavior. I assume that the model is

deterministic, with income yt ≡ ȳ. There is a single liquid asset b with a constant

interest rate r, and there is a single representative agent with initial wealth b0. The

borrowing limit is set to the natural borrowing constraint of b = −ȳ
r

. This agent has

sophisticated IG preferences.

In this simple model, the IG agent consumes c(b) = ρ−(1−γ)r
γ−(1−β)

(b + ȳ
r
).63 However,

the first-best consumption level is č(b) = ρ−(1−γ)r
γ

(b+ ȳ
r
).64

For simplicity, I assume that ρ = r, γ = 1, and b0 > 0. With these three

assumptions, the first-best consumption level is č(b0) = rb0 + ȳ. In other words,

it is optimal for the agent to consume the annuity value of their wealth plus the

deterministic income flow.

I now introduce a social planner to improve the consumption-saving decisions of

the representative IG agent. The social planner is allowed to use a combination of in-

terest rate subsidies and consumption taxes, subject to a balanced-budget constraint.

Interest rate subsidies encourage saving, while consumption taxes are a means of

financing these subsidies.

Denote the consumption tax by φt, and the subsidized interest rate by rst . The

social planner runs a balanced budget for all t, so the interest rate subsidy of (rst−r)bt
must equal the total tax revenue collected at each point in time.

With the introduction of consumption taxes, I will now use ct to denote gross

consumption expenditures at time t. However, the agent only gets to consume share

1− φt of gross consumption expenditures, with the rest going to taxes.

I now show that the social planner can recover the first-best equilibrium using

62I thank David Laibson for suggesting this example. A similar result is presented in Laibson
(1998).

63It is well known that a β = 1 agent would consume ρ−(1−γ)r
γ (b + ȳ

r ) (see e.g. Fagereng et al.,

2019). Then, Proposition 3 implies that the IG agent consumes 1
ψ times what the β = 1 agent

consumes.
64As discussed in Section 6, IG preferences feature a single welfare criterion even though they are

time-inconsistent. Hence, the concept of “first best” is well defined under IG preferences.
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a constant consumption tax and interest rate subsidy. To implement the first-best

equilibrium, the planner needs to choose rs and φ such that:

(1− φ)
rb0 + rȳ

rs

β
= rb0 + ȳ, and (39)

φ
rb0 + rȳ

rs

β
= (rs − r)b0. (40)

Under the simple calibration studied here, the IG agent will choose gross consump-

tion expenditures of c(b) =
rb+ rȳ

rs

β
.65 However, actual consumption is only (1 −

φ)c(b). Equation (39) imposes that realized consumption is at its first-best level:

(1− φ)c(b0) = rb0 + ȳ. Equation (40) is the balanced-budget condition. It says that

tax revenues of φc(b0) must equal the interest rate subsidy of (rs − r)b0.

One can show that the following set of policy tools produces the first-best equi-

librium:

rs =
r

β
, (41)

φ =
rb0(1− β)

rb0 + βȳ
. (42)

For example, consider the calibration β = 0.75, r = 3%, ȳ = 1, and b0 = 3 (similar to

Appendix E). The optimal consumption tax is φ = 2.68%, and the optimal subsidized

interest rate is rs = 4%.

Welfare and Implementability when β = 1. Proposition 10 highlights the chan-

nels through which present bias matters for policymakers: present bias does not

matter for determining whether a policy is welfare-improving, but does matter for

determining whether a policy is feasible. This toy model can be used to formalize

this discussion.

Proposition 10 implies that the interest rate subsidy plus consumption tax policy

in equations (41) and (42) would also be welfare-improving for β = 1 agents. However,

this policy is not possible in an economy populated by a representative β = 1 agent.

65Here I use the property that a constant consumption tax does not change the gross consumption
expenditure of the IG agent. See the proof of Proposition 9 for details.
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At time 0, the β = 1 agent would consume only r(b0 + ȳ
rs

), which is too little to

generate the requisite taxes needed to support the interest rate subsidy of (rs− r)b0.

D Extensions to the Household Balance Sheet Model

This section generalizes the modeling of the illiquid asset along various dimensions,

as discussed in Section 7.1. For notational simplicity I focus on the full sophistication

case. Naivete can be captured with the “One-Step Extension” discussed in Section 3.

D.1 Adjustment Decisions as an Optimal-Stopping Problem

This section studies an alternative model of asset illiquidity in which the agent always

maintains the option to adjust their illiquid wealth. In particular, I assume that

adjustments to the stock of illiquid assets require a fixed cost of F > 0,66 and can

be made at any time. Because adjustments require fixed costs, the agent will adjust

their asset allocation infrequently, similar to the reduced-form setup in the main text.

When the agent does not adjust their illiquid assets, the dynamic budget con-

straint is:

dbt = (yt + r(bt)bt − ct)dt,
dat
at

= radt+ σadZt.

When the agent adjusts their illiquid assets, the budget constraint is:

b′ + a′ = bt + at −F , (43)

where b′ and a′ denote liquid and illiquid wealth immediately after adjustment. At

all times, assets remain subject to the constraints that bt ≥ b and at ≥ 0.

Equilibrium Under Sophistication. To begin, denote by w∗ the shadow current-

value that the agent would earn if they adjusted their illiquid assets. That is, if

66Adjustment costs can be dependent on the state space, and can include variable costs in addition
to fixed costs. For simplicity, these alternate modeling choices are not explicitly studied here.
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an agent at point x = (b, a, y) would jump to point x′ = (b′, a′, y) conditional on

adjusting, then w∗(x) = w(x′). Similarly, let v∗(x) = v(x′).

A stationary Markov-perfect equilibrium to the sophisticated IG agent’s intraper-

sonal problem is characterized by the following Bellman equation, which consists of

a differential variational inequality defined on x:

ρv(x) = max
{
ρv∗(x), u(c(x)) + vb(x) (y + r(b)b− c(x))

+ va(x) (raa) +
1

2
vaa(x)(aσa)2

+
∑
y′ 6=y

λy→y
′
(v(b, a, y′)− v(b, a, y))

}
, (44)

subject to the optimality conditions:

u′(c(x)) =

βvb(x) if b > b

max
{
βvb(x), u′(y + r(b)b)

}
if b = b

, and (45)

v∗(x) = max
b′,a′

v(x′) s.t. constraint (43) holds, (46)

and the global bounds:

u (min{y}+ r(b)b)

ρ
≤ v(x) ≤ v̌(x). (47)

Equation (44) is similar to equation (11), except that equation (44) is written as

a variational inequality in order to capture the fact that the agent always has the

option of adjusting their illiquid assets.67 Intuitively, when the agent does not adjust

their asset allocation then the value function is pinned down by the righthand branch

of equation (44), which is similar to equation (11) but without the stochastic arrival

of adjustment opportunities. When the agent does pay the fixed cost to adjust their

asset allocation, the lefthand branch is selected and the value function is v∗(x).

The consumption decision in equation (45) is identical to equation (12) in the

67A similar approach is used in Laibson et al. (2023a). See also the notes at https://

benjaminmoll.com/codes/ under the heading “Stopping Time Problem” for additional details and
mathematical references.
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main text.

Equation (46) defines the asset allocation decision conditional on adjustment,

similar to equation (13). As in the main text, whenever the agent decides to adjust

their illiquid asset holdings they choose b′ and a′ to maximize w∗(x). Since w(x) =

βv(x), maximizing current-value function w is equivalent to maximizing continuation-

value function v. Accordingly, equation (46) works directly with v.

Results. Under this alternate setup for asset illiquidity the results in the main text

still hold. In particular, the û construction remains the same. Thus, the IG agent’s

value function v(x) can be characterized using the û agent (Proposition 1). When

Assumption 1 holds, the IG agent’s consumption function equals
(
βE

β

) 1
γ 1
ψE

times that

of the standard exponential agent (Proposition 3), and the IG agent has the same

demand for illiquid assets as the standard exponential agent (similar to Proposition

8).68 The welfare results in Section 6 (Propositions 9 and 10) also continue to hold.

D.2 Illiquid Housing

This section generalizes the modeling of the illiquid asset to the case of an illiquid

durable. In particular, I will refer to the durable as housing, which is a natural

application since housing is an important illiquid asset for many households.

Let at denote the agent’s holding of illiquid housing. Unlike strictly financial as-

sets, housing provides the agent with a flow of housing services, fat. Besides providing

this flow of housing services, I continue to maintain the illiquidity assumptions in the

main text (i.e., the illiquid durable has a return of ra and volatility σa,69 adjustments

are subject to transaction cost χ, etc.).

In this extension with housing, the agent’s utility is given by a Cobb-Douglas

aggregator over consumption ct and flow housing services.70 I assume that the agent’s

68In this model, “demand for illiquid assets” refers to two nested decisions. First, the agent chooses
where in the state space to adjust their illiquid assets. Second, the agent chooses b′, a′ conditional
on adjusting. Both of these decisions are independent of β (Laibson et al., 2023a).

69Depreciation equates to a negative return on the durable.
70Cobb-Douglas preferences are particularly relevant for the case of housing, since empirically the

housing expenditure share has been stable over time. The case of separable utility is also easily
handled.
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total flow of housing services is composed of the flow from the agent’s illiquid housing

stock, fat, plus a small fixed flow of h. Technically, this minimum housing flow h

ensures that the agent always consumes some amount of housing. It is a reduced-

form alternative to a richer model in which the agent can switch between being a

homeowner and a renter.71 Fully, the agent’s utility function is now:

u(c, a) =


(cη(fa+h)1−η)

1−γ
−1

1−γ if γ 6= 1

ln(cη(fa+ h)1−η) if γ = 1
. (48)

Remark. The model in the main text is recovered when η = 1. Additionally, through-

out this section I impose that Assumption 1 holds (and I ignore boundary conditions

accordingly when constructing the ûCD agent below).

In this extension with durables, the sophisticated IG agent’s intrapersonal problem

is characterized by the following Bellman equation:

ρv(x) = u(c(x), a) + vb(x) (y + r(b)b− c(x))

+ va(x) (raa) +
1

2
vaa(x)(aσa)2 + λa (v∗(x)− v(x))

+
∑
y′ 6=y

λy→y
′
(v(b, a, y′)− v(b, a, y)), (49)

subject to the optimality conditions:

uc(c(x), a) =

βvb(x) if b > b

max
{
βvb(x), uc(y + r(b)b, a)

}
if b = b

, and (50)

v∗(x) = max
b′,a′

v(b′, a′, y) s.t. constraint (5) holds, (51)

and the global bounds:

u (min{y}+ r(b)b, h)

ρ
≤ v(x) ≤ v̌(x). (52)

71In continuous time, this rental versus ownership choice could be modeled using the variational
inequality structure introduced in Appendix D.1. I abstract from these details here in order to
simplify the presentation.
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Equations (49) – (52) are similar to equations (11) – (14) in the main text.

Construction of ûCD Agent. To study this model with housing, I again want

to reverse-engineer an agent with standard exponential time preferences (β = 1)

but a penalized utility function ûCD such that the value function of the ûCD agent,

denoted v̂CD, equals a value function v of the IG agent. I use the “CD” superscript

to emphasize that the Cobb-Douglas aggregator used here changes the construction

relative to the main text.

As in the proof of Proposition 1, I construct the ûCD utility function so that the

following condition holds for all b > b:

u(c(x), a)− vb(x)c(x) = ûCD(ĉCD(x), a)− v̂CDb (x)ĉCD(x). (53)

Condition (53) ensures that v(x) = v̂CD(x) whenever Assumption 1 holds.

One can show that the requisite utility function ûCD is as follows:

ûCD(ĉCD, a) =
ψCD

β
u

(
1

ψCD
ĉCD, a

)
+
ψCD − 1

β
, where (54)

ψCD =
γCD − (1− β)

γCD
and γCD = 1− η(1− γ).

This is just like the û+ utility function in equation (17), except that ψ is replaced

by ψCD and risk aversion parameter γ is replaced by γCD = 1 − η(1 − γ). I write

the equations in this way to highlight the following intuition: in any specific instant,

housing stock at is fixed (because housing is illiquid). Accordingly, for that instant

the utility function u(c, a) =
(cη(fa+h)1−η)

1−γ
−1

1−γ is a positive affine transformation of
(cη)1−γ−1
η(1−γ)

, or equivalently c1−(1−η(1−γ))−1
1−(1−η(1−γ))

, which is standard CRRA utility but with risk

aversion γCD = 1− η(1− γ). Thus, with Cobb-Douglas preferences over housing we

can use the same construction of û, except that γ is replaced by γCD = 1− η(1− γ).

Results. In this model with illiquid housing, a perturbed version of the results

in the main text now obtains (in particular, the perturbation is that one needs to

use effective risk aversion γCD = 1 − η(1 − γ) instead of γ when constructing the
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ûCD agent). Perhaps most interestingly, this implies that the irrelevance result in

Proposition 8 continues to hold in this model with housing, suggesting that this

irrelevance result does not rely on illiquid assets being strictly financial assets.
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**SUPPLEMENTARY MATERIAL**

E The Aiyagari-Bewley-Huggett Model

This appendix studies IG preferences in a workhorse “Aiyagari-Bewley-Huggett”

heterogeneous-agent model, following the continuous-time specification of Achdou

et al. (2022). This model serves as an important building-block for a wide range of

quantitative applications.72

I model an endowment economy in which a continuum of agents have heteroge-

neous income and wealth profiles. Consumers are able to self-insure against income

fluctuations by accumulating a buffer-stock of savings. At the aggregate level there

exists an exogenous supply B of bonds. Interest rate r is determined in general

equilibrium to equate the supply of savings with B.

With present bias, the solution to this model takes the form of a nested equi-

librium. There is a sequence of two equilibria that must be solved jointly: (i) the

intrapersonal equilibrium of the IG agent, taking prices as given; and (ii) the general

equilibrium, in which individual-level policy functions are aggregated and markets

clear. As explained below, in continuous time the joint solution to these equilibria

takes the form of two coupled PDEs.

E.1 Consumer Problem (Intrapersonal Equilibrium)

The consumer’s side of this model is a simplification of the more general setup in

Section 3. I discuss specifics where necessary, and refer the reader to the main text

for details.

72Foundational work includes Bewley (1986), Huggett (1993), and Aiyagari (1994), as well as Im-
rohoroğlu (1989), Zeldes (1989), Deaton (1991), Carroll (1997), and Gourinchas and Parker (2002).
For more recent surveys, see e.g. Heathcote et al. (2009), Krueger et al. (2016), Benhabib and Bisin
(2018), and Kaplan and Violante (2018).
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The Household Balance Sheet. There is a single liquid asset. Let bt denote an

agent’s wealth at time t. bt evolves as follows:

dbt = (yt + rbt − ct)dt. (55)

yt is a stochastic endowment income process and ct is consumption. For simplicity I

assume that yt follows a two-state Poisson process yt ∈ {y1, y2}, with 0 < y1 < y2.

The income process jumps from state y1 to y2 with intensity λ1→2, and from y2 to y1

with intensity λ2→1.

Wealth is subject to the borrowing limit bt ≥ b. With present bias the equilibrium

is particularly sensitive to whether or not this borrowing constraint binds in equi-

librium, because binding constraints form a commitment device of sorts by limiting

overconsumption at b (see the discussion in Section 5.1 for more).

Utility and Value. As in the main text, agents have CRRA utility over consump-

tion. I assume here that agents are fully sophisticated about their present bias. For

comparison, the case of full naivete is presented in Appendix E.5.

Intrapersonal Equilibrium. Intrapersonal equilibrium in this model is a simpli-

fication of the model in the main text. Here, let x = (b, y), where b ∈ [b,∞) and

y ∈ {y1, y2}. A stationary Markov-perfect equilibrium to the sophisticated IG agent’s

intrapersonal problem is characterized by the following Bellman equation:

ρv(x) = u(c(x)) + vb(x) (y + rb− c(x)) + λy→y
′
(v(b, y′)− v(b, y)), (56)

subject to the optimality condition:

u′(c(x)) =

βvb(x) if b > b

max
{
βvb(x), u′(y + rb)

}
if b = b

, (57)

and the global bounds: u(y1+rb)
ρ
≤ v(x) ≤ v̌(x).
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E.2 General Equilibrium

To solve for a general equilibrium to this heterogeneous-agent model, the intrapersonal

equilibria of IG agents are aggregated and bond market clearing is imposed. To close

the model as simply as possible, I assume that there is an exogenous supply of safe

debt B ∈ (b,∞) that agents can hold (Huggett, 1993). It is well known that the

model can be closed in alternate ways (e.g., Aiyagari, 1994). This paper focuses

on the demand side of the economy, where present-biased preferences interact with

incomplete markets. Simplicity is preferred on the supply side for expositional clarity.

Let gt(b, y) denote the distribution of wealth and income at time t, such that∫∞
b
gt(b, y1)db +

∫∞
b
gt(b, y2)db = 1. Since this is an endowment economy with ex-

ogenous income, the one price that must be pinned down in general equilibrium is

the interest rate r. Given r, the consumer’s intrapersonal equilibrium is described

by equations (56) and (57). The resulting policy functions give rise to a Kolmogorov

Forward (KF) equation that characterizes the evolution of the aggregate wealth dis-

tribution.

In a stationary equilibrium the distribution of wealth is constant:

0 = − ∂

∂b
[s(b, y)g(b, y)]− λy→y′g(b, y) + λy

′→yg(b, y′), (58)

where s(b, y) is the saving policy function s(b, y) = y + rb − c(b, y). Equations (56)

and (57), plus KF equation (58), define a steady state aggregate savings function:

S(r) =

∫ ∞
b

bg(b, y1)db+

∫ ∞
b

bg(b, y2)db. (59)

The bond market clears when S(r) = B.

The action in this model occurs on the demand side of the economy, where con-

sumers are heterogeneous. Present bias adds an additional layer of complexity by

making the individual’s problem itself a dynamic game. The benefit of the continuous-

time IG approach is that the intrapersonal equilibrium can be characterized by a

partial differential equation (equation (56)). Following Achdou et al. (2022), a gen-

eral equilibrium can then be found by coupling the KF equation in (58) with the
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IG agent’s intrapersonal equilibrium. Using this approach, this paper is among the

first to solve a general equilibrium incomplete markets model where consumers have

present bias and policy functions are nonlinear.73

E.3 Model Solution and Results

I now solve this workhorse model numerically, and compare the equilibrium of an

economy with IG consumers (β < 1) to an economy with exponential consumers

(β = 1). Afterwards, I provide an additional set of theoretical results that formalize

equilibrium properties of this workhorse heterogeneous-agent model.

Stylized Calibration. I roughly calibrate the economy to reflect the problem of a

typical American household. Average income is normalized to one. I set y1 = 0.74

and y2 = 1.26, with a job switching rate of λ1→2 = λ2→1 = 0.19. This calibration

is a two-state discretization of the income process used in Guerrieri and Lorenzoni

(2017).74

Borrowing constraint b = −1
3
, which corresponds to the average credit limit re-

ported in the 2016 Survey of Consumer Finances (Laibson et al., 2023a). I set the

coefficient of relative risk aversion γ = 2. The exogenous supply of bonds is calibrated

to B = 3 in order to roughly capture the ratio of wealth to income in the United

States (Kaplan et al., 2018).

I target a steady-state interest rate of 3%, and the discount function is calibrated

internally to produce this interest rate in equilibrium. In the exponential model with

β = 1, r = 3% is produced with ρ = 3.5%. In the IG calibration I set β = 0.75. The

calibration of β = 0.75 is a conservative choice in the consumption-saving literature,

73Maliar and Maliar (2006) solve a similar model in discrete time but are forced to make smooth-
ness assumptions, which are only valid for β near 1, to solve the model. I instead utilize continuous-
time IG preferences.

74Guerrieri and Lorenzoni (2017) assume that log-income follows an AR(1) at a quarterly fre-

quency: log(yt+1) = ρ
(

log(yt)− σ2

2

)
+ σεt+1. Using the estimates of Floden and Lindé (2001),

this process is calibrated with persistence ρ = 0.967 and variance σ2 = 0.017. As in Laibson et al.
(2023a), I convert this quarterly AR(1) into an Ornstein-Uhlenbeck process, and then discretize the
Ornstein-Uhlenbeck process into two states using finite-difference methods.
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and the results that follow become more stark as β decreases.75 Given β = 0.75,

ρ = 2.5% produces a 3% steady-state interest rate.

To solve this model numerically I build on the finite difference methods presented

in Achdou et al. (2022). Details are given in Appendix B.

Consumption and Saving. The top panel of Figure 2 plots the consumption func-

tion for the β = 0.75 calibration and the β = 1 calibration. The β = 1 consumption

function is standard (see Achdou et al. (2022) for details). For β = 0.75, consumption

is well-behaved in that it does not suffer from pathologies on the interior of the wealth

space (Laibson and Maxted, 2023). However, the consumption function features a

discontinuity at b = b when y = y1. This consumption discontinuity is produced by

the corresponding discontinuity in the IG agent’s discount function. Consider the self

in control an instant before the constraint binds. This self does not want to smooth

consumption with the next self (for whom the constraint will bind), since the self in

control discounts the utility of the next self by β.

The bottom panel of Figure 2 plots the corresponding saving function s(x) =

y + rb− c(x) for both calibrations. Near b the IG agent has a lower saving rate than

the exponential agent. This pattern reverses as b increases. In short, the IG agent

saves less when poor but saves more when wealthy. Relative to the β = 1 agent, the

IG agent has both an incentive for lower saving (β < 1) and an incentive for higher

saving (lower value of ρ). When the consumption function is nonlinear, the relative

impact of β versus ρ varies over the state space. Near b, β < 1 dominates and the

IG agent saves less than the exponential agent. Away from b, the low value of ρ

dominates and the IG agent saves more than the exponential agent.

There are two reasons why the relative effect of β < 1 matters more for low lev-

els of wealth. First, as presented above in Euler equation (20), present bias creates

a disagreement between successive selves that is increasing in the slope of the con-

sumption function (i.e., the instantaneous MPC). Since the consumption function is

concave the slope of the consumption function is highest near b, which decreases the

75For example, Angeletos et al. (2001) set β = 0.7, arguing that this is consistent with laboratory
experiments. Laibson et al. (2023b) estimate β = 0.5 in a structural lifecycle model. Allcott et al.
(2022) estimate β = 0.75 on a sample of payday loan users.
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Figure 2: Equilibrium Consumption-Saving Decisions. This figure plots the
consumption function (top) and the saving function (bottom) for the β = 0.75 cali-
bration and the β = 1 calibration.

saving rate near b. Second, in the case where the borrowing constraint binds, time

inconsistency interacts with the consumer’s effective planning horizon to lower the

saving rate near b.

The intuition for the second effect – which requires binding borrowing constraints

as modeled here – is as follows. Sophisticated present bias means that the current self

distrusts the consumption decisions of future selves. This has offsetting effects on the

current self’s incentive to save. On the one hand, the current self knows that wealth

will be spent imprudently in the future. This decreases the saving rate of self t. On the

other hand, because self t knows that future selves will not save enough, self t has an
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incentive to set aside wealth today in order to buffer against future overconsumption.

This increases the saving rate of self t. The relative strength of the second effect

depends on the effective planning horizon. Binding borrowing constraints shorten

the consumer’s effective planning horizon and limit self t’s ability to pass wealth far

into the future (because any marginal savings will be fully consumed in finite time),

which reduces the current self’s incentive to save. Proposition 12 below characterizes

the interaction of present bias with the hard borrowing constraint at b.

Distributions. Figure 3 plots the stationary distribution of wealth in the two cali-

brations. By bond market clearing (with B = 3), the average wealth level is constant

across the two calibrations. However, the underlying distribution of wealth differs

considerably. Relative to β = 1, the β = 0.75 calibration features both a larger share

of agents near b and a thicker right tail. This is consistent with the saving functions

shown in Figure 2. Near b the IG agent has difficulty generating savings. However,

the lower long-run discount rate of the IG agent means that the IG agent also adopts

a higher saving rate as b increases. This generates the thicker right tail observed in

Figure 3.

Figure 3: The Distribution of Wealth. This figure shows the stationary wealth
distribution for the β = 0.75 calibration and the β = 1 calibration.

Quantifying these differences, Table 1 compares various measures of wealth in-

equality across the two calibrations. Wealth inequality is much higher for the β = 0.75
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economy. The maximum wealth level attained in the β = 0.75 economy is twice as

large as the maximum wealth level attained in the β = 1 economy. The β = 0.75

economy also features more wealth in the top 0.1%, 1%, 5%, and 10%. However, the

β = 0.75 economy produces almost four times as many agents constrained at b. As

shown in Panel C of the table, all of these differences in wealth inequality arise even

under the restriction that aggregate wealth is constant across the two calibrations.

β = 1 β = 0.75
Panel A: Upper Wealth Moments

Maximum Wealth (bmax) 71.2 154.4
Average Wealth | Top 0.1 % 14.7 21.9
Average Wealth | Top 1 % 11.7 16.7
Average Wealth | Top 5 % 9.3 12.5
Average Wealth | Top 10 % 8.1 10.6

Panel B: Lower Wealth Moments
Share b < 0 8.0% 18.0%
Share b = b 3.2% 11.9%
Average Wealth | Bottom 50 % 1.1 0.5

Panel C: Aggregate Wealth Moments
Standard Deviation b 3.9 4.5
Mean b 3.0 3.0
Median b 2.6 2.0

Table 1: Wealth Moments. This table characterizes the wealth distribution for the
β = 0.75 calibration and the β = 1 calibration.

As discussed in Section 5.2, one way to contextualize the results in Table 1 is to

note that present bias generates similar effects on the wealth distribution as hetero-

geneous time preferences.76 However, rather than assuming preference heterogeneity

across individuals, present bias endogenously generates effective time-preference het-

erogeneity within individuals that varies with wealth (recall the Euler equation in

Proposition 6). Near b the IG agent acts impatiently. This produces the large mass

of constrained agents. IG preferences simultaneously generate a longer right tail in

the wealth distribution, since IG agents act more patiently as their wealth increases.

It is well known that heterogeneous-agent models of the type solved here produce

76Heterogenous time preferences are a tool that has frequently been employed in macroeconomic
models to generate realistic wealth distributions (e.g., Campbell and Mankiw, 1989; Krusell and
Smith, 1998).
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counterfactually low levels of wealth inequality when β = 1 (Carroll, 1997; Quadrini

et al., 1997). While this numerical example is far too stylized to make any quantitative

claims, present bias moves these models in the right direction.77

The Marginal Propensity to Consume (MPC). Uninsurable income shocks

generate state-dependent MPCs. To study consumers’ MPCs in this model, I follow

Achdou et al. (2022) who define the MPC as follows:

Definition (Achdou et al. (2022) Definition 1). The Marginal Propensity to Consume

over a period τ is given by

MPCτ (x) = C ′τ (x), where (60)

Cτ (x) = Et
[∫ t+τ

t

c(xs)ds | xt = x

]
.

In equation (60) the MPC is defined over a discrete unit of time τ . While one

could also study the instantaneous MPC of cb(x), the cumulative MPC is more em-

pirically relevant because consumption is typically observed at a quarterly and/or

annual horizon. The MPC can be computed numerically using the Feynman-Kac

formula.

Figure 4 plots the quarterly MPC in the two calibrations. Near b the MPC is larger

for the IG agent because the IG agent lacks the self-control to smooth consumption

into the borrowing limit. Away from b the MPC is smaller for the IG agent.

The MPC analysis in Figure 4 does not account for the distribution of agents

across the high- and low-MPC parts of the state space. In particular, there is more

mass near b in the β = 0.75 calibration than in the β = 1 calibration. In the β = 0.75

calibration, the average MPC is 24.6% for low-income agents, and 0.9% for high-

income agents. In the β = 1 calibration, the average MPC is 4.5% for low-income

agents, and 1.2% for high-income agents. Though this example is stylized, the stark

difference in MPCs for low- versus high-income agents when β = 0.75 suggests that

77Mian et al. (2020) document that wealthy households have higher saving rates than poor house-
holds, and Fagereng et al. (2019) find that (net) saving rates are approximately constant in wealth.
Though the IG model cannot replicate these facts, the IG model performs better than the exponential
model because the saving rate declines more slowly with wealth for the IG calibration.

88



Figure 4: MPCs. This figure plots the quarterly MPC for the β = 0.75 calibration
and the β = 1 calibration.

fiscal stimulus targeted to low-income households will be particularly effective when

consumers are present biased. A more complete analysis is presented in Laibson et

al. (2023a). See also Laibson et al. (2022) for a discussion of how to map these

model-based notional MPCs into MPXs.

E.4 Theoretical Properties

I now characterize some additional properties of the model’s equilibrium. While the

results in this section are specific to the economic environment modeled above, they

can typically be generalized. Proofs are provided in Appendix E.6.

Consumption Behavior at the Constraint. I begin by characterizing how present

bias creates a consumption discontinuity at b when the constraint binds.

Proposition 12. Let c(b+, y) = lim
b→+b

c(b, y). If β < 1 and b binds for income state

yj then there is a discontinuity in consumption at b, such that c(b+, yj) > c(b, yj).

Specifically, c(b, yj) = yj + rb while c(b+, yj) is defined implicitly by

u′(c(b+, yj)) = β
u(c(b+, yj))− u(yj + rb)

c(b+, yj)− (yj + rb)
. (61)
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Proposition 12 formalizes the discontinuity in c(b, y1) seen in Figure 2. The IG

agent does not smooth consumption into the constraint. Instead, the IG agent chooses

a high level of consumption until the instant that the constraint binds, at which point

consumption drops discretely. The following perturbation argument, first provided

in Harris and Laibson (2004), provides the intuition for equation (61). Consider the

self who lives one instant before the borrowing constraint binds. That self can cut

consumption by db at a utility cost of u′(c(b+, yj))db. This allows future selves to

consume at rate c(b+, yj) rather than yj + rb for a timespan of dt = db
c(b+,yj)−(yj+rb)

.

The current self values this additional consumption at β (u(c(b+, yj))− u(yj + rb)) dt.

The current self must be indifferent to this perturbation in equilibrium, implying

u′(c(b+, yj))db = β (u(c(b+, yj))− u(yj + rb)) dt. Plugging in for dt yields equation

(61).

Consumption Behavior of the Wealthy. The sole source of uncertainty in this

model is income risk. Because income risk does not scale with wealth, income risk

ceases to affect consumption-saving decisions as b→∞. Under exponential discount-

ing, consumption and saving are asymptotically linear in b (Achdou et al., 2022).

This linearity property also applies to IG agents.

Proposition 13. Consumption and saving are asymptotically linear in b. Specifically,

lim
b→∞

c(x) =
ρ− (1− γ)r

γ − (1− β)
b, (62)

lim
b→∞

s(x) =
rβ − ρ

γ − (1− β)
b. (63)

An interesting corollary is that when β < 1 the elasticity of intertemporal substi-

tution (EIS) is no longer given by 1
γ
.

Corollary 14. In the limit as b→∞, the EIS is given by:

EIS = lim
b→∞

d
[
Etdct/dt

ct

]
dr

=
β

γ − (1− β)
.

A discrete-time version of this result is given in Laibson (1998). With IG pref-
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erences, the EIS is less than 1
γ

when γ > 1, and the EIS is greater than 1
γ

when

γ < 1. The intuition for this result is similar to the Euler equation in Proposition

6. The Euler equation shows that the IG agent chooses their consumption for strate-

gic reasons in addition to standard consumption-smoothing considerations. The EIS

determines the sensitivity of the IG agent’s current consumption to these strategic

motives. When γ < 1 the IG agent responds more than the standard exponential

agent to interest rate changes. The reverse holds for γ > 1.

Proposition 13 also allows for an approximation of the maximum wealth level that

can be attained in this model (see Table 1). Note that this result is an approximation

because, for finite wealth, the extent to which consumption can be approximated by

a linear function is calibration-dependent.

Remark 15. The maximum level of wealth is approximately

bmax ≈
κ(ȳ/r)− y2

r − κ
,

where κ = ρ−(1−γ)r
γ−(1−β)

is the consumption rate in equation (62) and ȳ = λ2→1y1+λ1→2y2

λ1→2+λ2→1

denotes average income.

The intuition for Remark 15 is straightforward. Using equation (62), a wealthy,

high-income, agent will save approximately s(b, y2) ≈ y2 +rb−κ
(
b+ ȳ

r

)
. Setting this

equal to 0 and rearranging yields the desired result.

E.5 Model Solution with Naivete

This section replicates the numerical example in Section E.3 under the assumption

of complete naivete. To generate an equilibrium interest rate of 3%, I set β = 0.75,

βE = 1, and ρ = 2.45%. The calibration is otherwise identical to Section E.3.

Overall the results are qualitatively similar. The main difference in behavior

between naifs and sophisticates occurs near b. Though naifs still overconsume near

the borrowing constraint, Figure 5 illustrates that naifs overconsume by less than

sophisticates. As described above, sophistication generates an interaction between

present bias and the borrowing constraint, which increases consumption near b. This
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effect does not arise under naivete.

Figure 5: Equilibrium Consumption-Saving Decisions. This figure plots the
equilibrium consumption function for the βE = β calibration (sophistication) and the
βE = 1 calibration (naivete).

Figure 6: MPCs. This figure plots the quarterly MPC for the βE = β calibration
and the βE = 1 calibration.
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E.6 Additional Proofs

Proof of Proposition 12. For full details, see Theorem 21 of Harris and Laibson

(2004). The value function for the IG agent is given by (see equation (56)):

ρv(x) = u(c(x)) + vb(x)(y + rb− c(x)) + λj→i(v(b, yi)− v(b, yj)).

If the constraint binds at b for income state yj, then c(b, yj) = yj + rb. Thus,

ρv(b, yj) = u(yj + rb) + λj→i(v(b, yi)− v(b, yj)).

Since the value function is continuous, ρv(b, yj) = limb→+b ρv(b, yj). Therefore:

u(yj + rb) + λj→i(v(b, yi)− v(b, yj))

= lim
b→+b

[
u(c(b, yj)) + vb(b, yj)(yj + rb− c(b, yj)) + λj→i(v(b, yi)− v(b, yj))

]
,

or simply

u(yj + rb) = lim
b→+b

[u(c(b, yj)) + vb(b, yj)(yj + rb− c(b, yj))] .

Using equation (57) gives

u(yj + rb) = lim
b→+b

[
u(c(b, yj)) +

1

β
u′(c(b, yj))(yj + rb− c(b, yj))

]
.

This equation can be rearranged to yield:

lim
b→+b

u′(c(b, yj)) = β

lim
b→+b

u(c(b, yj))− u(yj + rb)

lim
b→+b

c(b, yj)− (yj + rb)
,

which is equation (61).
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Proof of Proposition 13. The proof of Achdou et al. (2022)’s Proposition 2

applies to the û agent, giving

lim
b→∞

ĉ(x) =
ρ− (1− γ)r

γ
b.

Since the (sophisticated) IG agent sets c(x) = 1
ψ
ĉ(x) (see Proposition 3), this gives

lim
b→∞

c(x) =
1

ψ

ρ− (1− γ)r

γ
b

=
ρ− (1− γ)r

γ − (1− β)
b.

The proof for lim
b→∞

s(x) is similar.

Proof of Corollary 14. Using Itô’s Lemma, Etdc(xt)/dt
c(xt)

=
cb(xt)s(xt)+λ

j→i(c(bt,yi)−c(bt,yj))
c(xt)

.

Equations (62) and (63) give lim
b→∞

Etdc(xt)/dt
c(xt)

= rβ−ρ
γ−(1−β)

. Taking a derivative with re-

spect to r completes the proof.

F A Cake-Eating Model with a Credit Card

This appendix studies IG preferences in a deterministic cake-eating problem with

credit card borrowing (as studied in Proposition 7). For more details see also Lee and

Maxted (2023), who explore a similar model in order to illustrate that present bias is

capable of producing the high extensive margin but modest intensive margin usage

of high-cost debt that is observed empirically.

The Household Balance Sheet. As described in Proposition 7, I consider a sim-

plified version of the general model of Section 3 in which there is just a single liquid

asset b and income is deterministic with y > 0. Relative to a standard cake-eating

model, the one slight complication in the model presented here is that I assume that

there is a soft borrowing constraint at b = 0. Specifically, the agent earns a con-

stant return of r when b ≥ 0, but incurs a penalized “credit card” interest rate of

rcc = r + ωcc whenever b < 0.
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Illustrative Calibration. I assume that the IG agent is sophisticated with β =

0.75. I set γ = 2, r = 3%, and ρ = 5%. Deterministic income y is normalized to 1. I

consider two calibrations of the credit card interest rate, rcc = 15% and rcc = 30%.

Assumption 1 holds.78

Consumption and Saving. The top panel of Figure 7 plots the consumption

function for rcc = 15% (dashed gray) and rcc = 30% (red). The bottom panel of

Figure 7 plots the corresponding saving function s(b) = y + r(b)b − c(b) for both

calibrations. The dotted vertical lines mark where the IG agent sets s(b) = 0, which

in this deterministic model also marks the absorbing point in both calibrations. The

IG agent saves to the left of their absorbing point, and dissaves to the right of it. As

stated in Proposition 7, note that the IG agent ends up taking on some credit card

debt in both cases (i.e., the dotted vertical lines are to the left of b = 0).

An interesting feature of Figure 7 is that the consumption and saving functions are

identical for b ≥ 0, and only start to separate once b < 0. The separation when b < 0 is

natural: the agent consumes less and saves more when rcc increases. To understand

why the consumption and saving functions are identical when b ≥ 0, consider the

behavior of the standard exponential agent (with β = 1 and ρ = 5%) in this cake-

eating model. Since rcc > ρ > r in both calibrations, the standard exponential agent

will dissave whenever b > 0, but will always stop at the soft borrowing constraint of

b = 0 instead of taking on credit card debt. Thus, the standard exponential agent’s

consumption function for b ≥ 0 will be unaffected by whether rcc = 15% or rcc = 30%

(since in either case, the standard exponential agent never gets to the b < 0 part

of the state space). Turning to the IG agent, since Proposition 3 implies that the

sophisticated IG agent consumes 1
ψ

times the standard exponential agent, the IG

agent’s consumption function for b ≥ 0 will also be unaffected by whether rcc = 15%

or rcc = 30% (despite the IG agent eventually taking on credit card debt).

Value Functions. Next, the top panel of Figure 8 plots the IG agent’s continuation-

value function v(b) for rcc = 15% (dashed gray) and rcc = 30% (red). The bottom

78For simplicity, here I assume that b is the natural borrowing limit (see Proposition 2).
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Figure 7: Equilibrium Consumption-Saving Decisions. This figure plots the
consumption function (top) and the saving function (bottom) for rcc = 15% (dashed
gray) and rcc = 30% (red).

panel plots the difference between the continuation-value function when rcc = 30%

and the continuation-value function when rcc = 15%.

Similar to Figure 7 above, we again see that the continuation-value functions are

identical for b ≥ 0, and only start to separate once b < 0. This result is particularly

interesting here in that the IG agent’s value function for b ≥ 0 is unaffected by

whether rcc = 15% or rcc = 30%, despite the fact that the IG agent will eventually

borrow at one of those two rates.79

79Note that here I do not mechanically calculate the IG agent’s continuation-value function by
applying an affine transformation to the standard exponential agent’s value function. Instead, I first
calculate the IG agent’s consumption function, and then I iterate until convergence on the Bellman
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Figure 8: Equilibrium Value Functions. This figure plots the continuation-value
function v(b) (top) for rcc = 15% (dashed gray) and rcc = 30% (red), as well as the
difference between the two value functions (bottom).

Intuitively, this result is due to the fact that increasing the borrowing rate from

rcc = 15% to rcc = 30% introduces offsetting effects for the IG agent. On the one

hand, this increased borrowing rate is good for the IG agent because it induces the

IG agent to borrow less (see the bottom panel of Figure 7 above). On the other hand,

this increased borrowing rate is bad for the IG agent because the borrowing that they

still do becomes more costly. When b ≥ 0 these two effects exactly offset. When

b < 0, the latter effect dominates and the IG agent prefers the lower borrowing rate

of rcc = 15% (despite the fact that they borrow more in this case).

equation describing the IG agent’s continuation-value function, ρv(b) = u(c(b))+vb(y+r(b)b−c(b)).
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Discussion. A benefit of this cake-eating example is that it provides a simplified

special case to demonstrate some of the more general welfare results presented in the

main text.

First, this finding that the two continuation-value functions are identical for b ≥ 0

illustrates Proposition 1 that there is a value function equivalence (up to an affine

transformation) between the IG agent and the standard exponential agent whenever

Assumption 1 holds. Since the standard exponential agent never gets to the b < 0

part of the state space, their value function v̌(b) will be unaffected for all b ≥ 0

by whether rcc = 15% or rcc = 30%. Figure 8 shows that the same is true of the

sophisticated IG agent, despite the IG agent eventually taking on credit card debt.

Relatedly, this cake-eating example helps to illustrate the tradeoffs that underlie

the present-bias dilemma. In particular, while raising the credit card borrowing rate

from rcc = 15% to rcc = 30% does provide partial commitment in the sense that it

induces the IG agent to borrow less, it turns out that the IG agent is nonetheless

made (weakly) worse off by this increased borrowing rate. Accordingly, the IG agent

will never choose to self-impose a higher borrowing rate, exactly as implied by the

present-bias dilemma.
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Imrohoroğlu, Ayşe, “Cost of Business Cycles with Indivisibilities and Liquidity

Constraints,” Journal of Political Economy, 1989, 97 (6), 1364–1383.

99



Kaplan, Greg and Giovanni L. Violante, “Microeconomic Heterogeneity and

Macroeconomic Shocks,” Journal of Economic Perspectives, 2018, 32 (3), 167–94.

, Benjamin Moll, and Giovanni L. Violante, “Monetary Policy According to

HANK,” American Economic Review, 2018, 108 (3), 697–743.

Krueger, Dirk, Kurt Mitman, and Fabrizio Perri, “Macroeconomics and

Household Heterogeneity,” in “Handbook of Macroeconomics,” Vol. 2, Elsevier,

2016, pp. 843–921.

Krusell, Per and Anthony A. Smith Jr., “Income and Wealth Heterogeneity in

the Macroeconomy,” Journal of Political Economy, 1998, 106 (5), 867–896.

Laibson, David, “Life-Cycle Consumption and Hyperbolic Discount Functions,”

European Economic Review, 1998, 42 (3-5), 861–871.

and Peter Maxted, “The Beta-Delta-DELTA Sweet Spot,” NBER w30822, 2023.

, , and Benjamin Moll, “A Simple Mapping from MPCs to MPXs,” NBER

w29664, 2022.

, , and , “Present Bias Amplifies the Household Balance-Sheet Channels of

Macroeconomic Policy,” Mimeo, 2023.

, Sean Chanwook Lee, Peter Maxted, Andrea Repetto, and Jeremy To-

bacman, “Estimating Discount Functions with Consumption Choices over the Life-

cycle,” NBER w13314, 2023.

Lee, Sean Chanwook and Peter Maxted, “Credit Card Borrowing in

Heterogeneous-Agent Models: Reconciling Theory and Data,” SSRN 4389878,

2023.

Maliar, Lilia and Serguei Maliar, “The Neoclassical Growth Model with Het-

erogeneous Quasi-Geometric Consumers,” Journal of Money, Credit and Banking,

2006, 38 (3), 635–654.

Mian, Atif R., Ludwig Straub, and Amir Sufi, “The Saving Glut of the Rich

and the Rise in Household Debt,” NBER w26941, 2020.
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